
Lecture-23 

Topological Sorting: 

Topological sorting for Directed Acyclic Graph (DAG) is a linear ordering of vertices 

such that for every directed edge uv, vertex u comes before v in the 

ordering. Topological Sorting for a graph is not possible if the graph is not a DAG. 

For example, a topological sorting of the following graph is “5 4 2 3 1 0”. There can be 

more than one topological sorting for a graph. For example, another topological sorting 

of the following graph is “4 5 2 3 1 0”. The first vertex in topological sorting is always a 

vertex with in-degree as 0 (a vertex with no in-coming edges). 

Algorithm to find Topological Sorting: 

In DFS, we start from a vertex, we first print it and then recursively call DFS for its 

adjacent vertices. In topological sorting, we use a temporary stack. We don’t print the 

vertex immediately, we first recursively call topological sorting for all its adjacent 

vertices, then push it to a stack. Finally, print contents of stack. Note that a vertex is 

pushed to stack only when all of its adjacent vertices (and their adjacent vertices and so 

on) are already in stack. 

Topological Sorting vs Depth First Traversal (DFS): 

In DFS, we print a vertex and then recursively call DFS for its adjacent vertices. In 

topological sorting, we need to print a vertex before its adjacent vertices. For example, 

in the given graph, the vertex ‘5’ should be printed before vertex ‘0’, but unlike DFS, the 

vertex  ‘4’ should also be printed before vertex ‘0’. So Topological sorting is different 

from DFS. For example, a DFS of the shown graph is “5 2 3 1 0 4”, but it is not a 

topological sorting  

Dynamic Programming  

The Floyd Warshall Algorithm is for solving the All Pairs Shortest Path problem. The 

problem is to find shortest distances between every pair of vertices in a given edge 

weighted directed Graph. 

Example: 

Input: 

       graph[][] = { {0,   5,  INF, 10}, 

                    {INF,  0,  3,  INF}, 

                    {INF, INF, 0,   1}, 

                    {INF, INF, INF, 0} } 

which represents the following graph 

             10 

https://www.geeksforgeeks.org/depth-first-traversal-for-a-graph/
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Note that the value of graph[i][j] is 0 if i is equal to j  

And graph[i][j] is INF (infinite) if there is no edge from vertex i to j. 

 

Output: 

Shortest distance matrix 

      0      5      8      9 

    INF      0      3      4 

    INF    INF      0      1 

    INF    INF    INF      0  

Floyd Warshall Algorithm 

 

We initialize the solution matrix same as the input graph matrix as a first step. Then we 

update the solution matrix by considering all vertices as an intermediate vertex. The 

idea is to one by one pick all vertices and update all shortest paths which include the 

picked vertex as an intermediate vertex in the shortest path. When we pick vertex 

number k as an intermediate vertex, we already have considered vertices {0, 1, 2, .. k-1} 

as intermediate vertices. For every pair (i, j) of source and destination vertices 

respectively, there are two possible cases. 

1) k is not an intermediate vertex in shortest path from i to j. We keep the value of 

dist[i][j] as it is. 

2) k is an intermediate vertex in shortest path from i to j. We update the value of dist[i][j] 

as dist[i][k] + dist[k][j]. 

The following figure shows the above optimal substructure property in the all-pairs 

shortest path problem. 
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