
Lecture-23

Topological Sorting:

Topological sorting for Directed Acyclic Graph (DAG) is a linear ordering of vertices

such that for every directed edge uv, vertex u comes before v in the

ordering. Topological Sorting for a graph is not possible if the graph is not a DAG.

For example, a topological sorting of the following graph is “5 4 2 3 1 0”. There can be

more than one topological sorting for a graph. For example, another topological sorting

of the following graph is “4 5 2 3 1 0”. The first vertex in topological sorting is always a

vertex with in-degree as 0 (a vertex with no in-coming edges).

Algorithm to find Topological Sorting:

In DFS, we start from a vertex, we first print it and then recursively call DFS for its

adjacent vertices. In topological sorting, we use a temporary stack. We don’t print the

vertex immediately, we first recursively call topological sorting for all its adjacent

vertices, then push it to a stack. Finally, print contents of stack. Note that a vertex is

pushed to stack only when all of its adjacent vertices (and their adjacent vertices and so

on) are already in stack.

Topological Sorting vs Depth First Traversal (DFS):

In DFS, we print a vertex and then recursively call DFS for its adjacent vertices. In

topological sorting, we need to print a vertex before its adjacent vertices. For example,

in the given graph, the vertex ‘5’ should be printed before vertex ‘0’, but unlike DFS, the

vertex ‘4’ should also be printed before vertex ‘0’. So Topological sorting is different

from DFS. For example, a DFS of the shown graph is “5 2 3 1 0 4”, but it is not a

topological sorting

Dynamic Programming

The Floyd Warshall Algorithm is for solving the All Pairs Shortest Path problem. The

problem is to find shortest distances between every pair of vertices in a given edge

weighted directed Graph.

Example:

Input:

 graph[][] = { {0, 5, INF, 10},

 {INF, 0, 3, INF},

 {INF, INF, 0, 1},

 {INF, INF, INF, 0} }

which represents the following graph

 10

https://www.geeksforgeeks.org/depth-first-traversal-for-a-graph/
https://www.geeksforgeeks.org/depth-first-traversal-for-a-graph/
https://www.geeksforgeeks.org/depth-first-traversal-for-a-graph/

 (0)------->(3)

 | /|\

 5 | |

 | | 1

 \|/ |

 (1)------->(2)

 3

Note that the value of graph[i][j] is 0 if i is equal to j

And graph[i][j] is INF (infinite) if there is no edge from vertex i to j.

Output:

Shortest distance matrix

 0 5 8 9

 INF 0 3 4

 INF INF 0 1

 INF INF INF 0

Floyd Warshall Algorithm

We initialize the solution matrix same as the input graph matrix as a first step. Then we

update the solution matrix by considering all vertices as an intermediate vertex. The

idea is to one by one pick all vertices and update all shortest paths which include the

picked vertex as an intermediate vertex in the shortest path. When we pick vertex

number k as an intermediate vertex, we already have considered vertices {0, 1, 2, .. k-1}

as intermediate vertices. For every pair (i, j) of source and destination vertices

respectively, there are two possible cases.

1) k is not an intermediate vertex in shortest path from i to j. We keep the value of

dist[i][j] as it is.

2) k is an intermediate vertex in shortest path from i to j. We update the value of dist[i][j]

as dist[i][k] + dist[k][j].

The following figure shows the above optimal substructure property in the all-pairs

shortest path problem.

https://cdncontribute.geeksforgeeks.org/wp-content/uploads/dpFloyd-Warshall-.jpg

	Lecture-23
	Topological Sorting:
	Dynamic Programming

