

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE NAME: 19CS732 INFORMATION RETRIEVAL TECHNIQUES

IVYEAR / VIII SEMESTER

Unit 3- TEXT CLASSIFICATION AND CLUSTERING

Topic 1: A Characterization of Text Classification and Unsupervised Algorithms: Clustering, Naïve Text Classification

A Characterization of Text Classification and Unsupervised Algorithms: Clustering, Naïve Text Classification - **Problem**

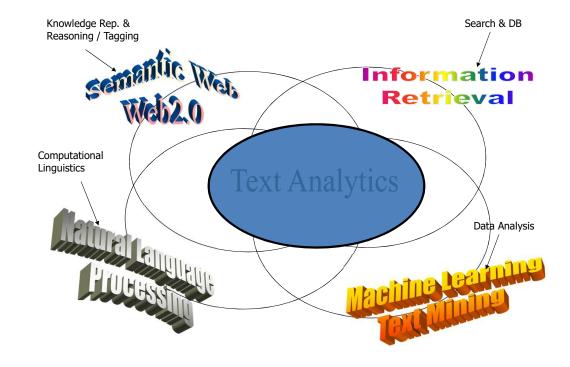
- ➤ Planning matters, but so does flexibility
- >Try maintaining an overview of the modeling workflow
- Given an example, classify if it is spam or not.
- Given a handwritten character, classify it as one of the known characters.
- Given recent user behavior, classify as churn or not.

What is Text-Mining?

What is Text-Mining?

- ➤ finding **interesting** regularities in large **textual** datasets..." (adapted from Usama Fayad)
 - ➤...where **interesting** means: non-trivial, hidden, previously unknown and potentially useful
- ➤"...finding semantic and abstract information from the surface form of textual data..."

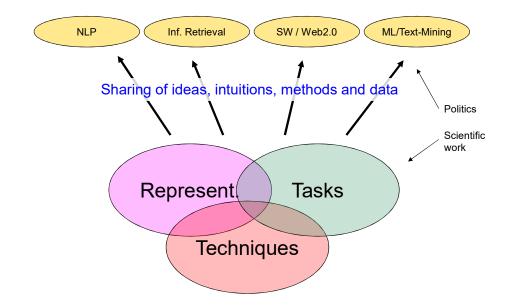
Text-Mining-Cont..



- ➤ Abstract concepts are **difficult to represent**
- **▶** "Countless" combinations of subtle, abstract relationships among concepts
- **➤ Many ways** to represent similar concepts
 - ➤ E.g. space ship, flying saucer, UFO
- ➤ Concepts are difficult to visualize
- **≻**High dimensionality
- > Tens or hundreds of thousands of features

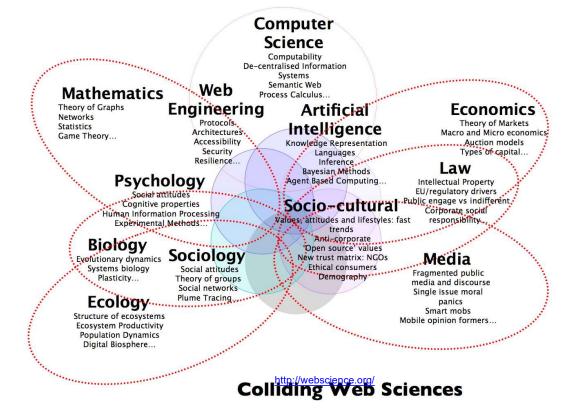
Who is in the text analysis arena?

What dimensions are in text analytics?


Three major dimensions of text analytics:

- ➤ Representations
 - ...from character-level to first-order theories
- **≻**Techniques
 - ➤...from manual work, over learning to reasoning
- **≻**Tasks
 - ➤ ...from search, over (un-, semi-) supervised learning, to visualization, summarization, translation ...

How dimensions fit to research areas?



Broader context: Web Science

Text-Mining How do we represent text?

Character (character n-grams and sequences)

Words (stop-words, stemming, lemmatization)

Phrases (word n-grams, proximity features)

Part-of-speech tags

Taxonomies / thesauri

Vector-space model

Language models

Full-parsing

Cross-modality

Collaborative tagging / Web2.0

Templates / Frames

Ontologies / First order theories

Character level

- ➤ Character level representation of a text consists from sequences of characters...
 - >...a document is represented by a frequency distribution of sequences
 - ➤ Usually we deal with contiguous strings...
 - ➤ ...each character sequence of length 1, 2, 3, ... represent a feature with its frequency

Word Level

- The most common representation of text used for many techniques
 - ➤ ...there are many tokenization software packages which split text into the words
- ➤ Important to know:
 - ➤ Word is well defined unit in western languages e.g. Chinese has different notion of semantic unit

Word Level -Cont...

- ➤ Relations among word surface forms and their senses:
 - ➤ **Homonomy**: same form, but different meaning (e.g. bank: river bank, financial institution)
 - **▶Polysemy**: same form, related meaning (e.g. bank: blood bank, financial institution)
 - >Synonymy: different form, same meaning (e.g. singer, vocalist)
 - >Hyponymy: one word denotes a subclass of an another (e.g. breakfast, meal)
- ➤ Word frequencies in texts have **power distribution**:
 - ➤ ...small number of very frequent words
 - ➤ ...big number of low frequency words.

Part-of-Speech level

- ➤ By introducing part-of-speech tags we introduce word-types enabling to differentiate words functions
 - For text-analysis part-of-speech information is used mainly for "information extraction" where we are interested in e.g. named entities which are "noun phrases"
 - Another possible use is reduction of the vocabulary (features)
 - ➤ ...it is known that nouns carry most of the information in text documents
- ➤ Part-of-Speech taggers are usually learned by HMM algorithm on manually tagged data

Part-of-Speech level -Cont..

part of speech	function or "job"	example words	example sentences
<u>Verb</u>	action or state	(to) be, have, do, like, work, sing, can, must	EnglishClub.com is a web site. I like EnglishClub.com.
Noun	thing or person	pen, dog, work, music, town, London, teacher, John	This is my dog . He lives in my house . We live in London .
<u>Adjective</u>	describes a noun	a/an, the, 69, some, good, big, red, well, interesting	My dog is big . I like big dogs.
<u>Adverb</u>	describes a verb, adjective or adverb	quickly, silently, well, badly, very, really	My dog eats quickly . When he is very hungry, he eats really quickly.
Pronoun	replaces a noun	I, you, he, she, some	Tara is Indian. She is beautiful.
Preposition	links a noun to another word	to, at, after, on, but	We went to school on Monday.
Conjunction	joins clauses or sentences or words	and, but, when	I like dogs and I like cats. I like cats and dogs. I like dogs but I don't like cats.
Interjection	short exclamation, sometimes inserted into a sentence	oh!, ouch!, hi!, well	Ouch! That hurts! Hi! How are you? Well, I don't know.

Activity

Disadvantages

- ➤ **Slow:** For larger dataset, it requires a large amount of time to process.
- **▶Poor performance with Overlapped classes** : Does not perform well in case of overlapped classes.
- ➤ Selecting appropriate hyperparameters is important: That will allow for sufficient generalization performance.
- ➤ Selecting the appropriate kernel

Advantages

- Performs well in Higher dimension
- Best algorithm when classes are separable
- Outliers have less impact.
- > SVM is suited for extreme case binary classification.

Assessment 1

- 1. List out the Advantages of text Classification
 - a)_____
 - b)_____
 - c)_____
 - d)_____
- 2. Identify the disadvantages of text Classification
 - a)_____
 - b)_____
 - c)_____
 - d)_____

TEXT BOOKS:

- 1. Ricardo Baeza-Yates and Berthier Ribeiro-Neto, —Modern Information Retrieval: The Concepts and Technology behind Search, Second Edition, ACM Press Books, 2011.
- 2. Ricci, F, Rokach, L. Shapira, B.Kantor, —Recommender Systems Handbook||, First Edition, 2011.

REFERENCES:

- 1. C. Manning, P. Raghavan, and H. Schütze, —Introduction to Information Retrieval, Cambridge University Press, 2008.
- 2. Stefan Buettcher, Charles L. A. Clarke and Gordon V. Cormack, —Information Retrieval: Implementing and Evaluating Search Engines, The MIT Press, 2010.

THANK YOU