
 

0/1 Knapsack Problem- 

  

In 0/1 Knapsack Problem, 

• As the name suggests, items are indivisible here. 

• We can not take the fraction of any item. 

• We have to either take an item completely or leave it completely. 

• It is solved using dynamic programming approach. 

  

0/1 Knapsack Problem Using Dynamic Programming- 

  

Consider- 

• Knapsack weight capacity = w 

• Number of items each having some weight and value = n 

  

0/1 knapsack problem is solved using dynamic programming in the following steps- 

  

Step-01: 

  

• Draw a table say ‘T’ with (n+1) number of rows and (w+1) number of columns. 

• Fill all the boxes of 0th row and 0th column with zeroes as shown- 

  



 

stack and put all of its adjacent nodes which are not visited in the stack. 

Step-02: 

  

Start filling the table row wise top to bottom from left to right. 

 

Use the following formula- 

T (i , j) = max { T ( i-1 , j ) , valuei + T( i-1 , j – weighti ) } 

  

Here, T(i , j) = maximum value of the selected items if we can take items 1 to i and have weight 

restrictions of j. 

  

• This step leads to completely filling the table. 

• Then, value of the last box represents the maximum possible value that can be put into the 

knapsack. 

  

Step-03: 

  

To identify the items that must be put into the knapsack to obtain that maximum profit, 

• Consider the last column of the table. 

• Start scanning the entries from bottom to top. 

• On encountering an entry whose value is not same as the value stored in the entry 

immediately above it, mark the row label of that entry. 



• After all the entries are scanned, the marked labels represent the items that must be put into 

the knapsack. 

  

Time Complexity- 

  

• Each entry of the table requires constant time θ(1) for its computation. 

• It takes θ(nw) time to fill (n+1)(w+1) table entries. 

• It takes θ(n) time for tracing the solution since tracing process traces the n rows. 

• Thus, overall θ(nw) time is taken to solve 0/1 knapsack problem using dynamic 

programming. 

  

PRACTICE PROBLEM BASED ON 0/1 KNAPSACK PROBLEM- 

  

Problem- 

  

For the given set of items and knapsack capacity = 5 kg, find the optimal solution for the 0/1 

knapsack problem making use of dynamic programming approach.  

  

 

Item Weight Value 

1 2 3 

2 3 4 

3 4 5 

4 5 6 

  

Find the optimal solution for the 0/1 knapsack problem making use of dynamic programming 

approach. Consider- 

 

n = 4 



w = 5 kg 

(w1, w2, w3, w4) = (2, 3, 4, 5)  

(b1, b2, b3, b4) = (3, 4, 5, 6) 

  

OR 

  

A thief enters a house for robbing it. He can carry a maximal weight of 5 kg into his bag. There are 4 

items in the house with the following weights and values. What items should thief take if he either 

takes the item completely or leaves it completely? 

  

Item Weight (kg) Value ($) 

Mirror 2 3 

Silver nugget 3 4 

Painting 4 5 

Vase 5 6 

  

Solution- 

  

Given- 

  

• Knapsack capacity (w) = 5 kg 

• Number of items (n) = 4 

  

Step-01: 

  

• Draw a table say ‘T’ with (n+1) = 4 + 1 = 5 number of rows and (w+1) = 5 + 1 = 6 number of 

columns. 

• Fill all the boxes of 0th row and 0th column with 0. 



Step-02: 

  

Start filling the table row wise top to bottom from left to right using the formula- 

T (i , j) = max { T ( i-1 , j ) , valuei + T( i-1 , j – weighti ) } 

  

Finding T(1,1)- 

  

We have, 

• i = 1 

• j = 1 

• (value)i = (value)1 = 3 

• (weight)i = (weight)1 = 2 

  

Substituting the values, we get- 

T(1,1) = max { T(1-1 , 1) , 3 + T(1-1 , 1-2) } 

T(1,1) = max { T(0,1) , 3 + T(0,-1) } 

T(1,1) = T(0,1)             { Ignore T(0,-1) } 

T(1,1) = 0 

  

Finding T(1,2)- 

  



We have, 

• i = 1 

• j = 2 

• (value)i = (value)1 = 3 

• (weight)i = (weight)1 = 2 

  

Substituting the values, we get- 

T(1,2) = max { T(1-1 , 2) , 3 + T(1-1 , 2-2) } 

T(1,2) = max { T(0,2) , 3 + T(0,0) } 

T(1,2) = max {0 , 3+0} 

T(1,2) = 3 

  

Finding T(1,3)- 

  

We have, 

• i = 1 

• j = 3 

• (value)i = (value)1 = 3 

• (weight)i = (weight)1 = 2 

  

Substituting the values, we get- 

T(1,3) = max { T(1-1 , 3) , 3 + T(1-1 , 3-2) } 

 

T(1,3) = max { T(0,3) , 3 + T(0,1) } 

T(1,3) = max {0 , 3+0} 

T(1,3) = 3 

  

Finding T(1,4)- 

  

We have, 

• i = 1 



• j = 4 

• (value)i = (value)1 = 3 

• (weight)i = (weight)1 = 2 

  

Substituting the values, we get- 

T(1,4) = max { T(1-1 , 4) , 3 + T(1-1 , 4-2) } 

T(1,4) = max { T(0,4) , 3 + T(0,2) } 

T(1,4) = max {0 , 3+0} 

T(1,4) = 3 

 

  

Finding T(1,5)- 

  

We have, 

• i = 1 

• j = 5 

• (value)i = (value)1 = 3 

• (weight)i = (weight)1 = 2 

  

Substituting the values, we get- 

T(1,5) = max { T(1-1 , 5) , 3 + T(1-1 , 5-2) } 

T(1,5) = max { T(0,5) , 3 + T(0,3) } 

T(1,5) = max {0 , 3+0} 

T(1,5) = 3 

  

Finding T(2,1)- 

  

We have, 

• i = 2 

• j = 1 

• (value)i = (value)2 = 4 



• (weight)i = (weight)2 = 3 

  

Substituting the values, we get- 

T(2,1) = max { T(2-1 , 1) , 4 + T(2-1 , 1-3) } 

T(2,1) = max { T(1,1) , 4 + T(1,-2) } 

T(2,1) = T(1,1)           { Ignore T(1,-2) } 

T(2,1) = 0 

  

Finding T(2,2)- 

  

We have, 

• i = 2 

• j = 2 

• (value)i = (value)2 = 4 

• (weight)i = (weight)2 = 3 

  

Substituting the values, we get- 

T(2,2) = max { T(2-1 , 2) , 4 + T(2-1 , 2-3) } 

T(2,2) = max { T(1,2) , 4 + T(1,-1) } 

T(2,2) = T(1,2)           { Ignore T(1,-1) } 

T(2,2) = 3 

  

Finding T(2,3)- 

  

We have, 

• i = 2 

• j = 3 

• (value)i = (value)2 = 4 

• (weight)i = (weight)2 = 3 

  

Substituting the values, we get- 



T(2,3) = max { T(2-1 , 3) , 4 + T(2-1 , 3-3) } 

T(2,3) = max { T(1,3) , 4 + T(1,0) } 

T(2,3) = max { 3 , 4+0 } 

T(2,3) = 4 

  

Finding T(2,4)- 

  

We have, 

• i = 2 

• j = 4 

• (value)i = (value)2 = 4 

• (weight)i = (weight)2 = 3 

  

Substituting the values, we get- 

T(2,4) = max { T(2-1 , 4) , 4 + T(2-1 , 4-3) } 

T(2,4) = max { T(1,4) , 4 + T(1,1) } 

T(2,4) = max { 3 , 4+0 } 

T(2,4) = 4 

  

Finding T(2,5)- 

  

We have, 

• i = 2 

• j = 5 

• (value)i = (value)2 = 4 

• (weight)i = (weight)2 = 3 

  

Substituting the values, we get- 

T(2,5) = max { T(2-1 , 5) , 4 + T(2-1 , 5-3) } 

T(2,5) = max { T(1,5) , 4 + T(1,2) } 

T(2,5) = max { 3 , 4+3 } 



T(2,5) = 7 

  

Similarly, compute all the entries. 

After all the entries are computed and filled in the table, we get the following table- 

  

 

• The last entry represents the maximum possible value that can be put into the knapsack. 

• So, maximum possible value that can be put into the knapsack = 7. 

  

Identifying Items To Be Put Into Knapsack- 

  

Following Step-04, 

• We mark the rows labelled “1” and “2”. 

• Thus, items that must be put into the knapsack to obtain the maximum value 7 are- 

Item-1 and Item 2 

 


