SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107 AN AUTONOMOUS INSTITUTION

lited AICTE and Accredited by NAAC – UGC with 'A'

Accredited AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

B.E. – Electronics and Communication Engineering

23ECT201 & Signals and Systems

UNIT I - CONTINUOUS AND DISCRETE TIME SIGNALS AND SYSTEMS

QUESTION BANK

PART - A

1. For the signal shown, find x(2t + 3)

	(or) (or) (iven $g(n) = 2e^{-2n-3}$ Write out	r_{i} functions (i)g(2 n) (ii)	
σ((r	(10)+4) (Apr/May2016)	$\frac{1}{2} = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = $	
2. 3.	Define Unit Impulse and Unit Step Signal. (Apr/June 2010, Apr/June 2011) Give the mathematical and geometrical representation of CT and DT unit impulse function.		
		(Nov/Dec 2013)	
4.	State two properties of unit impulse function.	(Nov/Dec 2014)	
5.	Define energy and power signal.	(Nov/Dec 2010)	
(or)			
	Define a power signal.	(Apr/May 2015)	
6.	Determine whether the signal $x(t) = e^{-2t} u(t)$ is energy or power signal and calculate the same.		
_		(Nov/Dec 2012)	
7.	Find the fundamental period of $x[n] = sin((6\pi n/7) + 1)$	(Apr/May 2012)	
8.		(Apr/May 2013)	
9. 10	Define a Random Signal.	(Apr/May 2013)	
10.	What are the classifications of the systems?	(Nov/Dec 2009)	
11.	when is a system said to be memory less? Give an example.	(Apr/May 2010)	
12.	Define Causal System.	(Apr/May 2011)	
13.	13. Check whether the system $y(n) = x(2n)$ is static or dynamic and causal or non- causal.		
		(Nov/Dec 2012)	
14.	State BIBO criteria for stability.	(Nov/Dec 2010)	
15.	Check whether $v(t) = x(t^2)$ is LTI.	(Apr/May 2012)	
16.	What are the conditions for a system to be LTI system?	(Nov/Dec 2013)	
17.	Draw the following signals: (a). $u(t)-u(t-10)$, (b). $(1/2)^n u(n-1)$.	(Nov/Dec 2014)	
	(or) Sketch the following signals: $Rect((t+1)/4)$: 5 ramp(0.1t)	(Apr/May 2016)	

(Nov/Dec2009)

- 18. How the impulse response of a discrete time system is useful in determining its stability and causality. (Apr/May 2015)
- 19. Find the value of the integral $\int_{-\infty}^{\infty} e^{-2t} f(t+2) dt$. 20. Give the set

20. Give the relation between continuous time unit impulse function f(t),step function u(t) and ramp function r(t). (Nov/Dec 2015)