

## **SNS COLLEGE OF ENGINEERING**

Kurumbapalayam (Po), Coimbatore – 641 107

#### **An Autonomous Institution**

Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

#### **DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING**

COURSE NAME : 19EE501 TRANSMISSION & DISTRIBUTION

III YEAR /V SEMESTER EEE

Unit 3 – Analysis of Transmission Lines

**Voltage Regulation & Transmission Efficiency** 







#### **Voltage Regulation**

When a transmission line is carrying current, there is a voltage drop in the line due to resistance and inductance of the line. The result is that receiving end voltage (V<sub>R</sub>) of the line is generally less than the sending end voltage (VS). This voltage drop (V<sub>S</sub>-V<sub>R</sub>) in the line is expressed as a percentage of receiving end voltage VR and is called voltage regulation

The difference in voltage at the receiving end of a transmission line \*\*between conditions of no load and full load is called voltage regulation and is expressed as a percentage of the receiving end voltage.











# **Transmission efficiency.**

The power obtained at the receiving end of a transmission line is generally less than the sending end power due to losses in the line resistance.
The ratio of receiving end power to the sending end power of a transmission line is known as the transmission efficiency of the line

% age Transmission efficiency, 
$$\eta_T = \frac{\text{Receiving end power}}{\text{Sending end power}} \times 100$$
  
=  $\frac{V_R I_R \cos \phi_R}{V_S I_S \cos \phi_S} \times 100$ 







#### REFERENCES



- Wadhwa, C.L., "Electrical Power Systems", New Age International Publishers Ltd., New Delhi, 7<sup>th</sup> Edition, 2017.
- Kothari D. P., Nagrath I. J., "Modern Power System Analysis", McGraw Hill India Limited, New Delhi, 4<sup>th</sup> Edition 2011.
- Mehta, V.K., Rohit Mehta, "Principles of Power Systems", S.Chand& Company Private Limited, New Delhi, 4<sup>th</sup>Revised Edition, 2011.
- Singh S.N, "Electric Power Generation, Transmission and Distribution", PHI Learning Private Limited, New Delhi, 2<sup>nd</sup>Edition, 2009.
- Uppal, S.L., Rao, S., "Electrical Power", Khanna Publishers Limited, New Delbi, 15<sup>th</sup>Edition, 2014.



## **THANK YOU**

