

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641 107

AN AUTONOMOUS INSTITUTION

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

23ITB204 – Modern Database Management Systems Unit II – 16 Marks

1.Discuss the components of an Entity-Relationship (ER) diagram. Illustrate your answer with an example ER diagram for a university database that includes entities such as Students, Courses, and Instructors. Explain the relationships and attributes associated with each entity.

2.Explain the concept of the Enhanced Entity-Relationship (EER) model. How does it extend the traditional ER model? Provide examples of specialization and generalization in an EER diagram, and discuss the implications for database design.

3.Describe the process of converting an ER diagram into a relational schema. What are the key steps involved? Provide a detailed example by converting a given ER diagram into its corresponding relational tables, including primary and foreign keys.

4.Define functional dependencies and their role in database design. Explain the concepts of non-loss decomposition and normalization. Provide an example to demonstrate how to decompose a relation into First, Second, and Third Normal Forms, ensuring dependency preservation.

5.What is Boyce-Codd Normal Form (BCNF)? Explain how it differs from Third Normal Form (3NF). Provide a practical example to illustrate a relation that is in 3NF but not in BCNF. Discuss the decomposition process to achieve BCNF.

6.Define multi-valued dependencies and explain their significance in database design. What is Fourth Normal Form (4NF), and how does it address multi-valued dependencies? Provide an example of a relation that violates 4NF and demonstrate the decomposition to achieve 4NF.

7.Discuss the concept of join dependencies and their relationship to Fifth Normal Form (5NF). Explain what it means for a relation to be in 5NF and provide an example of a relation that violates 5NF. Demonstrate the decomposition process to convert it to 5NF.

8.Explain about primary and foreign keys with its syntax. Give example for the keys. 9.For the same example relation R with the two tuples as in the notes above, decompose it as R1(A,B) and R2(A,C). Try and merge them back using natural join and see if the resulting relation is the sameas R. Do you think this decomposition is a lossless join decomposition? 10. Explain about Armstrong Axiom's with functional dependencies.Consider relation E = (P, Q, R, S, T, U) having set of Functional Dependencies (FD).

 $\begin{array}{ll} P \rightarrow Q & P \rightarrow R \\ QR \rightarrow S & Q \rightarrow T \\ QR \rightarrow U & PR \rightarrow U \end{array}$

Calculate some members of Axioms are as follows,

1. $P \rightarrow T$ 2. $PR \rightarrow S$ 3. $QR \rightarrow SU$ 4. $PR \rightarrow SU$.

11. Consider the relation schema below.

Depositer_Account(id,acc_num,access_date,balance, and branch_name).

A set of functional dependencies F can be specified for this relation as

 $F = \{ \{id, acc_num\} \rightarrow access_date and acc_num \rightarrow \{balance, branch_name\} \}$

Find out the closure of {id, acc_num} and acc_num.

12. From the following tables,

- i) Write a SQL query to count the number of employees in each designation of a department. Return department id, job name and number of employees.
- ii) Write a SQL query to identify the departments in which at least two employees are employed. Return department id, number of employees.
- iii) Write a SQL query to list the grade, number of employees, and maximum salary of each grade.
- iv) Write a SQL query to identify departments with fewer than four employees. Return department ID, number of employees

mp_id emp_name	job_name mana	<u>iger id hire date sa</u>	lary commission ;	dep_id
68319 KAYLING	PRESIDENT	1991-11-18 (1001
66928 BLAZE	MANAGER	68319 1991-05-01 2	2750.00	3001
67832 CLARE	MANAGER	68319 1991-06-09 2	2550.00	1001
65646 JONAS	MANAGER	68319 1991-04-02 2	2957.00	2001
67858 SCARLET	ANALYST	65646 1997-04-19 3	3100.00	2001
69062 FRANK	ANALYST	65646 1991-12-03 3	3100.00	2001
63679 SANDRINE	CLERK	69062 1990-12-18	900.00	2001
64989 ADELYN	SALESMAN	66928 1991-02-20 3	1700.00 400.00	3001
65271 WADE	SALESMAN	66928 1991-02-22 3	1350.00 600.00	3001
66564 MADDEN	SALESMAN	66928 1991-09-28 3	1350.00 1500.00	3001
68454 TUCKER	SALESMAN	66928 1991-09-08 3	1600.00 0.00	3001
68736 ADNRES	CLERK	67858 1997-05-23 3	1200.00	2001
69000 JULIUS	CLERK	66928 1991-12-03 3	1050.00	3001
69324 MARKER	CLERK	67832 1992-01-23 3	1400.00	1001
(14 rows)				

Sample table: salary_grade

grade | min_sal | max_sal

+	+	
1	800	1300
2	1301	1500
3	1501	2100
4	2101	3100
5	3101	9999
(5 rows)		

13) Consider a relation schema R with attributes ABCDEFGH with functional dependencies S:

 $S = \{B \rightarrow CD; BF \rightarrow H; C \rightarrow AG; CEH \rightarrow F; CH \rightarrow B\}$

Which of these functional dependencies violate BCNF (Boyce-Codd Normal Form)

14) Let us assume a table User_Personal as given below;

Userl	U_email	Fname	Lname	City	State	Zip
D						
MA12	Mani@ymail.com	MANISH	JAIN	BILASPUR	CHATISGARH	458991
PO45	Pooja.g@gmail.co	POOJA	MAGG	КАССН	GUJRAT	832212
LA33	Lavle98@jj.com	LAVLEEN	DHALL	RAIPUR	CHATISGARH	853578
СН99	Cheki9j@ih.com	CHIMAL	BEDI	TRICHY	TAMIL NADU	632011
DA74	Danu58@g.com	DANY	JAMES	TRICHY	TAMIL NADU	645018

I(a) Identify the normal form present in the above table one by one and convert it upto third Normal forms.

15. The relation schema Student_Performance (name, courseNo, rollNo, grade) has the following FDs:

name,courseNo->grade

rollNo,courseNo->grade

name->rollNo

rollNo->name

Identify the highest normal form of this relation and also find out the closure sets and superkey of the functional dependencies.

16) Given a relation R(P, Q, R, S, T, U, V, W, X, Y) and Functional Dependency set FD = { PQ \rightarrow R, PS \rightarrow VW, QS \rightarrow TU, P \rightarrow X, W \rightarrow Y }, determine whether the given R is in 2NF? If not convert it into 2 NF.

(ii) Find all the candidate keys of R given R and the set F of functional dependencies (FDs) as follows;

R = (a, b, c, d, e) and F = $\{a \rightarrow c, c \rightarrow bd, d \rightarrow a\}$

17) Consider the following relation (table) STUDENT1 to explain the property 1NF and convert it into first normalized form.

RegNo	<u>SName</u>	Gen	PR	CName Regd
R1	Sundar	М	BTech	Database, Data Structures
R2	Ram	М	MS	Database
R3	Kathik	М	MCA	Data Structures, Multimedia
R4	John	М	BSc	Multimedia

Table 1 – STUDENT1

18)From the following tables write a SQL query to find the salesperson and customer who reside in the same city. Return Salesman, cust_name and city.

salesman_i	d name city commission	
	+ +	
5001	James Hoog New York 0.15	
5002	Nail Knite Paris 0.13	
5005	Pit Alex London 0.11	
5006	Mc Lyon Paris 0.14	
5007	Paul Adam Rome 0.13	
5003	Lauson Hen San Jose 0.12	
Sample tab	le: customer	
customer_i	d cust_name city grade sa	lesman_id
	+ + +	
3002	Nick Rimando New York 100	5001
3007	Brad Davis New York 200	5001
3005	Graham Zusi California 200	5002
3008	Julian Green London 300	5002
3004	Fabian Johnson Paris 300	5006
3009	Geoff Cameron Berlin 100	5003
3003	JozyAltidor Moscow 200	5007
3001	Brad Guzan London	5005

19) Consider a relation Student (StudentID, ModuleID, ModuleName, StudentName, StudentAddress, TutorId, TutorName). Each student is given a StudentID and each module given a ModuleID. A student can register more modules and a module can be registered by more students. TutorID is the ID of the student's personal tutor, it is not related to the modules that the student is taking. Each student has only one tutor, but a tutor can have many tutees. Different students can have the same name. Different students can be living at the same address. Find all the functional dependencies holding in this relation, all possible candidate keys of functional dependencies and normalize the table to 3NF.