



## **SNS COLLEGE OF ENGINEERING**

Kurumbapalayam (Po), Coimbatore – 641 107

### **An Autonomous Institution**

Accredited by NBA-AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

## DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE NAME : 19EC513 – IMAGE PROCESSING AND COMPUTER VISION III YEAR / V SEMESTER

Unit IV- MORPHOLOGICAL IMAGE PROCESSING

**Topic : Basic Morphological algorithm** 



Basic Morphological algorithm / 19EC513/ IMAGE PROCESSING AND COMPUTER VISION /Mr.S.HARIBABU/ECE/SNSCE



#### **Convex Hull**

A set A is said to be convex if the straight line segment joining any two points in A lies entirely within A.

The convex hull H or of an arbitrary set S is the smallest convex set containing S

## **Convex Hull**

Let  $B^i$ , i = 1, 2, 3, 4, represent the four structuring elements.

The procedure consists of implementing the equation:

 $X_k^i = (X_{k-1} \circledast B^i) \cup A$ i = 1, 2, 3, 4 and k = 1, 2, 3, ...

with  $X_0^i = A$ .

When the procedure converges, or  $X_k^i = X_{k-1}^i$ , let  $D^i = X_k^i$ , the convex hull of A is

 $C(A) = \bigcup_{i=1}^{4} D^i$ 

















**FIGURE 9.20** Result of limiting growth of the convex hull algorithm to the maximum dimensions of the original set of points along the vertical and horizontal directions.





Thinning

The thinning of a set A by a structuring element B, defined

$$A \otimes B = A - (A^{\circledast}B)$$
$$= A \cap (A^{\circledast}B)^{c}$$

A more useful expression for thinning A symmetrically is based on a sequence of structuring elements:

$${B} = {B^1, B^2, B^3, ..., B^n}$$

where  $B^i$  is a rotated version of  $B^{i-1}$ 

The thinning of A by a sequence of structuring element  $\{B\}$  $A \otimes \{B\} = ((...((A \otimes B^1) \otimes B^2)...) \otimes B^n)$ 









 $B^7$  $B^8$  $B^4$  $B^5$  $B^6$  $A_2 = A_1 \otimes B^2$  $A_1 = A \otimes B^1$  $A_4 = A_3 \otimes B^4$  $A_5 = A_4 \otimes B^5$  $A_{8,4} = A_8 \otimes B^{1,2,3,4}$  $A_8 = A_6 \otimes B^{7,8}$ 

| $A_{8,5} = A_{8,4} \otimes B^5$ | $A_{8,6} = A_{8,5} \otimes B^6$ | A <sub>8,6</sub> converted to |
|---------------------------------|---------------------------------|-------------------------------|
|                                 | No more changes after this.     | <i>m</i> -connectivity.       |

- But

A

 $A_3 = A_2 \otimes B^3$ 

 $A_6 = A_5 \otimes B^6$ 

 $B^2$ 

 $B^1$ 

Origin

 $B^3$ 





$$A \square B = A \cup (A^{\circledast}B)$$

Thickening:

The thickening is defined by the expression

The thickening of A by a sequence of structuring element  $\{B\}$  $A \square \{B\} = ((...((A \square B^1) \square B^2)...) \square B^n)$ 



**FIGURE 9.22** (a) Set A. (b) Complement of A. (c) Result of thinning the complement of A. (d) Thickened set obtained by complementing (c). (e) Final result, with no disconnected points.





A skeleton, S(A) of a set A has the following properties

- a. if z is a point of S(A) and (D)<sub>z</sub> is the largest disk centered at z and contained in A, one cannot find a larger disk containing (D)<sub>z</sub> and included in A. The disk (D)<sub>z</sub> is called a maximum disk.
- b. The disk  $(D)_z$  touches the boundary of A at two or more different places.



#### Pruning

Thinning and skeletonizing tend to leave parasitic components b. Pruning methods are essential complement to thinning and skeletonizing procedures







# THANK YOU !!!