
SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING-IoT and CS Including BCT

COURSE NAME :23ITB201-DATA STRUCTURES & ALGORITHMS

II YEAR / III SEMESTER

Unit III- SORTING, SEARCHING & HASHING

Topic :Insertion Sort – Divide & Conquer

01-10-2024 Insertion Sort – Divide & Conquer/ 23ITB201-DATA STRUCTURES & ALGORITHMS /Mr.R.Kamalakkannan/CSE-IOT/SNSCE
1

01-10-2024
Insertion Sort – Divide & Conquer/ 23ITB201-DATA STRUCTURES & ALGORITHMS /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
2

Insertion sort is a simple sorting algorithm that works by iteratively
inserting each element of an unsorted list into its correct position in a
sorted portion of the list.
It is a stable sorting algorithm, meaning that elements with equal values
maintain their relative order in the sorted output.

OR

Insertion sort is a simple sorting algorithm that works by building a
sorted array one element at a time.
It is considered an ” in-place ” sorting algorithm, meaning it doesn’t
require any additional memory space beyond the original array.

01-10-2024
Insertion Sort – Divide & Conquer/ 23ITB201-DATA STRUCTURES & ALGORITHMS /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
3

Algorithm

The simple steps of achieving the insertion sort are listed as follows -
Step 1 - If the element is the first element, assume that it is already
sorted. Return 1.
Step2 - Pick the next element, and store it separately in a key.
Step3 - Now, compare the key with all elements in the sorted array.
Step 4 - If the element in the sorted array is smaller than the current
element, then move to the next element. Else, shift greater elements
in the array towards the right.
Step 5 - Insert the value.
Step 6 - Repeat until the array is sorted.

01-10-2024
Insertion Sort – Divide & Conquer/ 23ITB201-DATA STRUCTURES & ALGORITHMS /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
4

We take an unsorted array for our example.

Insertion sort compares the first two elements.

It finds that both 14 and 33 are already in ascending order.
For now, 14 is in sorted sub-list.

01-10-2024
Insertion Sort – Divide & Conquer/ 23ITB201-DATA STRUCTURES & ALGORITHMS

/Mr.R.Kamalakkannan/CSE-IOT/SNSCE
5

Insertion sort moves ahead and compares 33 with 27.

And finds that 33 is not in the correct position.
It swaps 33 with 27.
It also checks with all the elements of sorted sub-list.
Here we see that the sorted sub-list has only one element 14, and 27
is greater than 14.
Hence, the sorted sub-list remains sorted after swapping.

01-10-2024
Insertion Sort – Divide & Conquer/ 23ITB201-DATA STRUCTURES & ALGORITHMS /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
6

By now we have 14 and 27 in the sorted sub-list.
Next, it compares 33 with 10.
These values are not in a sorted order.

So they are swapped.

However, swapping makes 27 and 10 unsorted.

01-10-2024
Insertion Sort – Divide & Conquer/ 23ITB201-DATA STRUCTURES & ALGORITHMS /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
7

Hence, we swap them too.

Again we find 14 and 10 in an unsorted order.

We swap them again.

01-10-2024
Insertion Sort – Divide & Conquer/ 23ITB201-DATA STRUCTURES & ALGORITHMS /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
8

By the end of third iteration, we have a sorted sub-list of 4 items.

This process goes on until all the unsorted values are covered in a
sorted sub-list. Now we shall see some programming aspects of
insertion sort.

01-10-2024
Insertion Sort – Divide & Conquer/ 23ITB201-DATA STRUCTURES & ALGORITHMS

/Mr.R.Kamalakkannan/CSE-IOT/SNSCE
9

void insertionSort(int array[], int
size){
 int key, j;
 for(int i = 1; i<size; i++) {
 key = array[i];//take value
 j = i;
 while(j > 0 && array[j-1]>key) {
 array[j] = array[j-1];
 j--;
 }
 array[j] = key; //insert in right
place
 }
}

int main(){
 int n;
 n = 5;
 int arr[5] = {67, 44, 82, 17, 20}; // initialize the
array
 printf("Array before Sorting: ");
 for(int i = 0; i<n; i++)
 printf("%d ",arr[i]);
 printf("\n");
 insertionSort(arr, n);
 printf("Array after Sorting: ");
 for(int i = 0; i<n; i++)
 printf("%d ", arr[i]);
 printf("\n");
}

01-10-2024
Insertion Sort – Divide & Conquer/ 23ITB201-DATA STRUCTURES & ALGORITHMS /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
10

Divide and Conquer Introduction

Divide and Conquer is an algorithmic pattern.

In algorithmic methods, the design is to take a dispute on a huge input,
break the input into minor pieces, decide the problem on each of the
small pieces, and then merge the piecewise solutions into a global
solution.

This mechanism of solving the problem is called the Divide & Conquer
Strategy.

Divide and Conquer algorithm consists of a dispute using the following
three steps.

01-10-2024
Insertion Sort – Divide & Conquer/ 23ITB201-DATA STRUCTURES & ALGORITHMS /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
11

Divide the original problem into a set of subproblems.

Conquer: Solve every subproblem individually, recursively.

Combine: Put together the solutions of the subproblems to get the
solution to the whole problem.

01-10-2024
Insertion Sort – Divide & Conquer/ 23ITB201-DATA STRUCTURES & ALGORITHMS /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
12

01-10-2024
Insertion Sort – Divide & Conquer/ 23ITB201-DATA STRUCTURES & ALGORITHMS /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
13

01-10-2024
Insertion Sort – Divide & Conquer/ 23ITB201-DATA STRUCTURES & ALGORITHMS /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
14

Divide/Break
This step involves breaking the problem into smaller sub-problems.
Sub-problems should represent a part of the original problem.

This step generally takes a recursive approach to divide the problem
until no sub-problem is further divisible.

At this stage, sub-problems become atomic in size but still represent
some part of the actual problem.

Conquer/Solve
This step receives a lot of smaller sub-problems to be solved. Generally,
at this level, the problems are considered 'solved' on their own.

01-10-2024
Insertion Sort – Divide & Conquer/ 23ITB201-DATA STRUCTURES & ALGORITHMS /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
15

Merge/Combine

When the smaller sub-problems are solved, this stage recursively
combines them until they formulate a solution of the original
problem.
This algorithmic approach works recursively and conquer & merge
steps works so close that they appear as one.

01-10-2024
Insertion Sort – Divide & Conquer/ 23ITB201-DATA STRUCTURES & ALGORITHMS /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
16

Arrays as Input

There are various ways in which various algorithms can take input
such that they can be solved using the divide and conquer
technique.

 Arrays are one of them. In algorithms that require input to be in the
form of a list, like various sorting algorithms, array data structures
are most commonly used.

In the input for a sorting algorithm below, the array input is divided
into subproblems until they cannot be divided further.

01-10-2024
Insertion Sort – Divide & Conquer/ 23ITB201-DATA STRUCTURES & ALGORITHMS /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
17

01-10-2024
Insertion Sort – Divide & Conquer/ 23ITB201-DATA STRUCTURES & ALGORITHMS

/Mr.R.Kamalakkannan/CSE-IOT/SNSCE
18

Then, the subproblems are sorted (the conquer step) and are merged
to form the solution of the original array back (the combine step).

01-10-2024
Insertion Sort – Divide & Conquer/ 23ITB201-DATA STRUCTURES & ALGORITHMS

/Mr.R.Kamalakkannan/CSE-IOT/SNSCE

Any Query????

Thank you……

19

