
19EC503 – ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

UNIT 5 - DEEP LEARNING

TOPIC: Bidirectional Recurrent Neural Networks

Bidirectional Recurrent Neural Network

Introduction

 Recurrent Neural Networks (RNNs) are a particular class of neural networks that was

created with the express purpose of processing sequential input, including speech, text, and

time series data. RNNs process data as a sequence of vectors rather than feedforward neural

networks, which process data as a fixed-length vector. Each vector is processed depending on

the hidden state from the previous phase.

 The network can store data from earlier steps in the sequence in a type of memory by

computing the hidden state by taking into account both the current input and the hidden state

from the previous phase. RNNs are thus well suited for jobs that call for knowledge of the

context and connections among sequence elements.

 Even though conventional RNNs can handle variable-length sequences, they sometimes

have trouble with the vanishing gradient problem. Gradients during backpropagation become

extremely small at this point, making it challenging for the network to learn from the data.

Many RNN versions, such LSTMs, and GRUs, which use gating methods to regulate the flow

of information and enhance learning, have been created to address this problem.

Bi-directional Recurrent Neural Network

 An architecture of a neural network called a bidirectional recurrent neural network

(BRNN) is made to process sequential data. In order for the network to use information from

both the past and future context in its predictions, BRNNs process input sequences in both the

forward and backward directions. This is the main distinction between BRNNs and

conventional recurrent neural networks.

 A BRNN has two distinct recurrent hidden layers, one of which processes the input

sequence forward and the other of which processes it backward. After that, the results from

these hidden layers are collected and input into a prediction-making final layer. Any recurrent

neural network cell, such as Long Short-Term Memory (LSTM) or Gated Recurrent Unit, can

be used to create the recurrent hidden layers.

 The BRNN functions similarly to conventional recurrent neural networks in the forward

direction, updating the hidden state depending on the current input and the prior hidden state

at each time step. The backward hidden layer, on the other hand, analyses the input sequence

in the opposite manner, updating the hidden state based on the current input and the hidden

state of the next time step.

 Compared to conventional unidirectional recurrent neural networks, the accuracy of the

BRNN is improved since it can process information in both directions and account for both

past and future contexts. Because the two hidden layers can complement one another and give

https://www.geeksforgeeks.org/introduction-to-recurrent-neural-network/
https://www.geeksforgeeks.org/understanding-of-lstm-networks/
https://www.geeksforgeeks.org/gated-recurrent-unit-networks/

the final prediction layer more data, using two distinct hidden layers also offers a type of model

regularisation.

 In order to update the model parameters, the gradients are computed for both the

forward and backward passes of the backpropagation through the time technique that is

typically used to train BRNNs. The input sequence is processed by the BRNN in a single

forward pass at inference time, and predictions are made based on the combined outputs of the

two hidden layers. layers.

Bi-directional Recurrent Neural Network

Working of Bidirectional Recurrent Neural Network

1. Inputting a sequence: A sequence of data points, each represented as a vector with the

same dimensionality, are fed into a BRNN. The sequence might have different lengths.

2. Dual Processing: Both the forward and backward directions are used to process the

data. On the basis of the input at that step and the hidden state at step t-1, the hidden

state at time step t is determined in the forward direction. The input at step t and the

hidden state at step t+1 are used to calculate the hidden state at step t in a reverse way.

3. Computing the hidden state: A non-linear activation function on the weighted sum of

the input and previous hidden state is used to calculate the hidden state at each step.

This creates a memory mechanism that enables the network to remember data from

earlier steps in the process.

4. Determining the output: A non-linear activation function is used to determine the output

at each step from the weighted sum of the hidden state and a number of output weights.

This output has two options: it can be the final output or input for another layer in the

network.

5. Training: The network is trained through a supervised learning approach where the goal

is to minimize the discrepancy between the predicted output and the actual output. The

network adjusts its weights in the input-to-hidden and hidden-to-output connections

during training through backpropagation.

Applications of Bidirectional Recurrent Neural Network

Bi-RNNs have been applied to various natural language processing (NLP) tasks, including:

https://www.geeksforgeeks.org/top-7-applications-of-natural-language-processing/

1. Sentiment Analysis: By taking into account both the prior and subsequent context,

BRNNs can be utilized to categorize the sentiment of a particular sentence.

2. Named Entity Recognition: By considering the context both before and after the stated

thing, BRNNs can be utilized to identify those entities in a sentence.

3. Part-of-Speech Tagging: The classification of words in a phrase into their

corresponding parts of speech, such as nouns, verbs, adjectives, etc., can be done using

BRNNs.

4. Machine Translation: BRNNs can be used in encoder-decoder models for machine

translation, where the decoder creates the target sentence and the encoder analyses the

source sentence in both directions to capture its context.

5. Speech Recognition: When the input voice signal is processed in both directions to

capture the contextual information, BRNNs can be used in automatic speech

recognition systems.

 Advantages of Bidirectional RNN

• Context from both past and future: With the ability to process sequential input both

forward and backward, BRNNs provide a thorough grasp of the full context of a

sequence. Because of this, BRNNs are effective at tasks like sentiment analysis and

speech recognition.

• Enhanced accuracy: BRNNs frequently yield more precise answers since they take both

historical and upcoming data into account.

• Efficient handling of variable-length sequences: When compared to conventional

RNNs, which require padding to have a constant length, BRNNs are better equipped to

handle variable-length sequences.

• Resilience to noise and irrelevant information: BRNNs may be resistant to noise and

irrelevant data that are present in the data. This is so because both the forward and

backward paths offer useful information that supports the predictions made by the

network.

• Ability to handle sequential dependencies: BRNNs can capture long-term links

between sequence pieces, making them extremely adept at handling complicated

sequential dependencies.

 Disadvantages of Bidirectional RNN

• Computational complexity: Given that they analyze data both forward and backward,

BRNNs can be computationally expensive due to the increased amount of calculations

needed.

• Long training time: BRNNs can also take a while to train because there are many

parameters to optimize, especially when using huge datasets.

• Difficulty in parallelization: Due to the requirement for sequential processing in both

the forward and backward directions, BRNNs can be challenging to parallelize.

• Overfitting: BRNNs are prone to overfitting since they include many parameters that

might result in too complicated models, especially when trained on short datasets.

• Interpretability: Due to the processing of data in both forward and backward directions,

BRNNs can be tricky to interpret since it can be difficult to comprehend what the model

is doing and how it is producing predictions.

https://www.geeksforgeeks.org/what-is-sentiment-analysis/
https://www.geeksforgeeks.org/named-entity-recognition/
https://www.geeksforgeeks.org/nlp-part-of-speech-default-tagging/
https://www.geeksforgeeks.org/machine-translation-of-languages-in-artificial-intelligence/
https://www.geeksforgeeks.org/speech-recognition-in-python-using-google-speech-api/
https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/

