

SNS COLLEGE OF ENGINEERING

Coimbatore-35 An Autonomous Institution

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

- DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING
 - 19EC505 –VLSI DESIGN
 - III YEAR/ V SEMESTER

1

UNIT 3 -SEQUENTIAL LOGIC CIRCUITS

TOPIC 3 -TIMING ISSUES

OUTLINE

- SYNCHRONOUS TIMING
- LATCH PARAMETERS
- REGISTER PARAMETERS
- CLOCK UNCERTAINTIES
- **CLOCK NONIDEALITIES**
- CLOCK SKEW AND JITTER
- POSITIVE AND NEGATIVE SKEW
- TIMING CONSTRAINTS
- ACTIVITY
- IMPACT OF JITTER
- SHORTEST PATH
- HOW TO COUNTER CLOCK SKEW?
- LATCH TIMING
- ASSESSMENT
- SUMMARY & THANKYOU

SYNCHRONOUS TIMING

LATCH PARAMETERS

Delays can be different for rising and falling data transitions

REGISTER PARAMETERS

Delays can be different for rising and falling data transitions

CLOCK UNCERTAINTIES

CLOCK NONIDEALITIES

Clock skew

–Spatial variation in temporally equivalent clock edges; deterministic + random, t_{SK}

Clock jitter

- -Temporal variations in consecutive edges of the clock signal; modulation + random noise
- –Cycle-to-cycle (short-term) t_{IS}
- –Long term t_{IL}

Variation of the pulse width

-Important for level sensitive clocking

CLOCK SKEW AND JITTER

- Both skew and jitter affect the effective cycle time
- Only skew affects the race margin

CLOCK SKEW

POSITIVE AND NEGATIVE SKEW

TIMING CONSTRAINTS

Worst case is when receiving edge arrives early (positive δ)

CLASS ROOM ACTIVITY

IMPACT OF JITTER

SHORTEST PATH

Worst case is when receiving edge arrives late Race between data and clock

HOW TO COUNTER CLOCK SKEW?

Data and Clock Routing

LATCH TIMING

- •When data arrives
- to closed latch
- Data has to be 're-launched'

Latch is a 'soft' barrier

•When data arrives to transparent latch

ASSESSMENT

- 1. Compare latch & Register parameters
- 2. Define Clock Skew & Jitter
- 3. Differentiate positive skew & negative skew
- 4. How to counter clock skew?

SUMMARY & THANK YOU