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TOPIOC : LINEAR REGRESSION 

 Linear regression is a type of supervised machine learning algorithm that computes the 

linear relationship between the dependent variable and one or more independent features by 

fitting a linear equation to observed data. 

 When there is only one independent feature, it is known as Simple Linear Regression, 

and when there are more than one feature, it is known as Multiple Linear Regression. 

 Similarly, when there is only one dependent variable, it is considered Univariate Linear 

Regression, while when there are more than one dependent variables, it is known 

as Multivariate Regression. 

Why Linear Regression is Important? 

 The interpretability of linear regression is a notable strength. The model’s equation 

provides clear coefficients that elucidate the impact of each independent variable on the 

dependent variable, facilitating a deeper understanding of the underlying dynamics. Its 

simplicity is a virtue, as linear regression is transparent, easy to implement, and serves as a 

foundational concept for more complex algorithms. 

 Linear regression is not merely a predictive tool; it forms the basis for various advanced 

models. Techniques like regularization and support vector machines draw inspiration from 

linear regression, expanding its utility. Additionally, linear regression is a cornerstone in 

assumption testing, enabling researchers to validate key assumptions about the data. 

Types of Linear Regression 

There are two main types of linear regression: 

Simple Linear Regression 

 This is the simplest form of linear regression, and it involves only one independent 

variable and one dependent variable. The equation for simple linear regression is: 

y=β0+β1Xy=β0+β1X 

where: 

• Y is the dependent variable 

• X is the independent variable 

• β0 is the intercept 

• β1 is the slope 

https://www.geeksforgeeks.org/supervised-machine-learning/
https://www.geeksforgeeks.org/simple-linear-regression-using-r/
https://www.geeksforgeeks.org/ml-multiple-linear-regression-using-python/
https://www.geeksforgeeks.org/univariate-linear-regression-in-python/
https://www.geeksforgeeks.org/univariate-linear-regression-in-python/
https://www.geeksforgeeks.org/multivariate-regression/


Multiple Linear Regression 

 This involves more than one independent variable and one dependent variable. The 

equation for multiple linear regression is: 

y=β0+β1X1+β2X2+………βnXny=β0+β1X1+β2X2+………βnXn 

where: 

• Y is the dependent variable 

• X1, X2, …, Xn are the independent variables 

• β0 is the intercept 

• β1, β2, …, βn are the slopes 

The goal of the algorithm is to find the best Fit Line equation that can predict the values 

based on the independent variables. 

 In regression set of records are present with X and Y values and these values are used 

to learn a function so if you want to predict Y from an unknown X this learned function can be 

used. In regression we have to find the value of Y, So, a function is required that predicts 

continuous Y in the case of regression given X as independent features. 

What is the best Fit Line? 

 Our primary objective while using linear regression is to locate the best-fit line, which 

implies that the error between the predicted and actual values should be kept to a minimum. 

There will be the least error in the best-fit line. 

 The best Fit Line equation provides a straight line that represents the relationship 

between the dependent and independent variables. The slope of the line indicates how much 

the dependent variable changes for a unit change in the independent variable(s). 



 

Linear Regression 

 

 Here Y is called a dependent or target variable and X is called an independent variable 

also known as the predictor of Y. There are many types of functions or modules that can be 

used for regression. A linear function is the simplest type of function. Here, X may be a single 

feature or multiple features representing the problem. 

 Linear regression performs the task to predict a dependent variable value (y) based on 

a given independent variable (x)). Hence, the name is Linear Regression. In the figure above, 

X (input) is the work experience and Y (output) is the salary of a person. The regression line is 

the best-fit line for our model.  

 We utilize the cost function to compute the best values in order to get the best fit line 

since different values for weights or the coefficient of lines result in different regression lines. 

Hypothesis function in Linear Regression 

 As we have assumed earlier that our independent feature is the experience i.e X and the 

respective salary Y is the dependent variable. Let’s assume there is a linear relationship between 

X and Y then the salary can be predicted using: 

Y^=θ1+θ2XY^=θ1+θ2X 

OR 

y^i=θ1+θ2xiy^i=θ1+θ2xi 

Here, 



• yiϵY(i=1,2,⋯,n)     yiϵY(i=1,2,⋯,n)  are labels to data (Supervised learning) 

• xiϵX(i=1,2,⋯,n)     xiϵX(i=1,2,⋯,n)  are the input independent training data (univariate 

– one input variable(parameter))  

• yi^ϵY^(i=1,2,⋯,n)     yi^ϵY^(i=1,2,⋯,n)  are the predicted values. 

The model gets the best regression fit line by finding the best θ1 and θ2 values.  

• θ1: intercept  

• θ2: coefficient of x  

Once we find the best θ1 and θ2 values, we get the best-fit line. So when we are finally using 

our model for prediction, it will predict the value of y for the input value of x.  

How to update θ1 and θ2 values to get the best-fit line?  

 To achieve the best-fit regression line, the model aims to predict the target 

value Y^     Y^  such that the error difference between the predicted value Y^     Y^  and the 

true value Y is minimum. So, it is very important to update the θ1 and θ2 values, to reach the 

best value that minimizes the error between the predicted y value (pred) and the true y value 

(y).  

minimize1n∑i=1n(yi^−yi)2minimizen1∑i=1n(yi^−yi)2 

Cost function for Linear Regression 

 The cost function or the loss function is nothing but the error or difference between the 

predicted value Y^     Y^  and the true value Y. 

 In Linear Regression, the Mean Squared Error (MSE) cost function is employed, 

which calculates the average of the squared errors between the predicted values y^iy^i and the 

actual values yiyi. The purpose is to determine the optimal values for the intercept θ1θ1 and 

the coefficient of the input feature θ2θ2 providing the best-fit line for the given data points. 

The linear equation expressing this relationship is y^i=θ1+θ2xiy^i=θ1+θ2xi. 

MSE function can be calculated as: 

Cost function(J)=1n∑ni(yi^−yi)2Cost function(J)=n1∑ni(yi^−yi)2 

 Utilizing the MSE function, the iterative process of gradient descent is applied to update 

the values of \θ1&θ2θ1&θ2. This ensures that the MSE value converges to the global minima, 

signifying the most accurate fit of the linear regression line to the dataset. 

 This process involves continuously adjusting the parameters \(\theta_1\) and 

\(\theta_2\) based on the gradients calculated from the MSE. The final result is a linear 

regression line that minimizes the overall squared differences between the predicted and actual 

values, providing an optimal representation of the underlying relationship in the data. 

Assumptions of Simple Linear Regression 

https://www.geeksforgeeks.org/what-is-cost-function/
https://www.geeksforgeeks.org/ml-common-loss-functions/


 Linear regression is a powerful tool for understanding and predicting the behavior of a 

variable, however, it needs to meet a few conditions in order to be accurate and dependable 

solutions.  

1. Linearity: The independent and dependent variables have a linear relationship with one 

another. This implies that changes in the dependent variable follow those in the 

independent variable(s) in a linear fashion. This means that there should be a straight 

line that can be drawn through the data points. If the relationship is not linear, then 

linear regression will not be an accurate model. 

 

2. Independence: The observations in the dataset are independent of each other. This 

means that the value of the dependent variable for one observation does not depend on 

the value of the dependent variable for another observation. If the observations are not 

independent, then linear regression will not be an accurate model. 

3. Homoscedasticity: Across all levels of the independent variable(s), the variance of the 

errors is constant. This indicates that the amount of the independent variable(s) has no 

impact on the variance of the errors. If the variance of the residuals is not constant, then 

linear regression will not be an accurate model. 

 

Homoscedasticity in Linear Regression 

4. Normality: The residuals should be normally distributed. This means that the residuals 

should follow a bell-shaped curve. If the residuals are not normally distributed, then 

linear regression will not be an accurate model. 

 



Assumptions of Multiple Linear Regression 

For Multiple Linear Regression, all four of the assumptions from Simple Linear Regression 

apply. In addition to this, below are few more: 

1. No multicollinearity: There is no high correlation between the independent variables. 

This indicates that there is little or no correlation between the independent variables. 

Multicollinearity occurs when two or more independent variables are highly correlated 

with each other, which can make it difficult to determine the individual effect of each 

variable on the dependent variable. If there is multicollinearity, then multiple linear 

regression will not be an accurate model. 

2. Additivity: The model assumes that the effect of changes in a predictor variable on the 

response variable is consistent regardless of the values of the other variables. This 

assumption implies that there is no interaction between variables in their effects on the 

dependent variable. 

3. Feature Selection: In multiple linear regression, it is essential to carefully select the 

independent variables that will be included in the model. Including irrelevant or 

redundant variables may lead to overfitting and complicate the interpretation of the 

model. 

4. Overfitting: Overfitting occurs when the model fits the training data too closely, 

capturing noise or random fluctuations that do not represent the true underlying 

relationship between variables. This can lead to poor generalization performance on 

new, unseen data. 

Multicollinearity 

 Multicollinearity is a statistical phenomenon that occurs when two or more independent 

variables in a multiple regression model are highly correlated, making it difficult to assess the 

individual effects of each variable on the dependent variable. 

Detecting Multicollinearity includes two techniques: 

• Correlation Matrix: Examining the correlation matrix among the independent 

variables is a common way to detect multicollinearity. High correlations (close to 1 or 

-1) indicate potential multicollinearity. 

• VIF (Variance Inflation Factor): VIF is a measure that quantifies how much the 

variance of an estimated regression coefficient increases if your predictors are 

correlated. A high VIF (typically above 10) suggests multicollinearity. 

 

https://www.geeksforgeeks.org/multicollinearity-in-data/

