

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

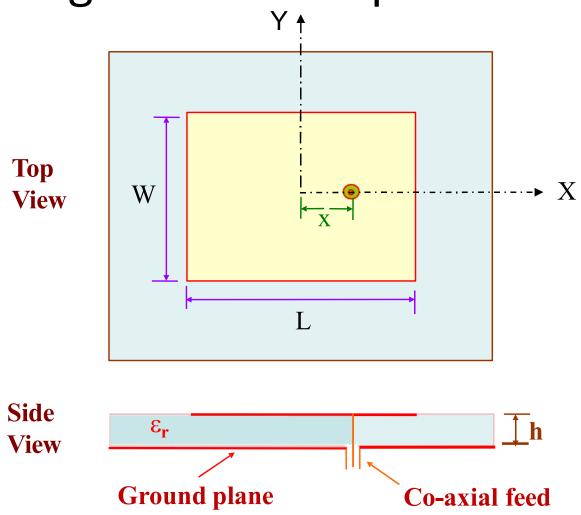
An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Subject Code: 19EC502

Subject: Transmission Lines and Antennas


Unit-IV

Topic: Microstrip Antennas

Rectangular Microstrip Antenna (RMSA)

icrowave Integrated Circuits (MIC) vs MSA

Parameters	MIC	MSA	
Dielectric Constant (ε_r)	Large	Small	
Thickness (h)	Small	Large	
Width (W)	Generally Small (impedance dependent)	Generally Large	
Radiation	Minimum (small fringing fields)	Maximum (large fringing fields)	
Examples	Filters, power dividers, couplers, amplifiers, etc.	Antennas	

Substrates for MSA

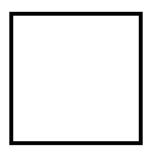
Substrate	Dielectric Constant (ε _r)	Loss tangent (tanδ)	Cost
Alumina	9.8	0.001	Very High
Glass Epoxy	4.4	0.02	Low
Duroid / Arlon	2.2	0.0009	Very High
Foam	1.05	0.0001	Low/ Medium
Air	1	0	NA

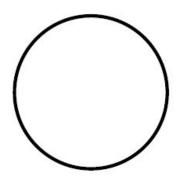
Advantages

- Light weight, low volume, low profile, planar configuration, which can be made conformal
- > Low fabrication cost and ease of mass production
- > Linear and circular polarizations are possible
- > Dual frequency antennas can be easily realized
- Feed lines and matching network can be easily integrated with antenna structure

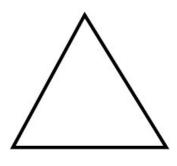
Disadvantages

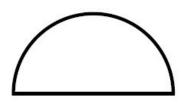
- > Narrow bandwidth (1 to 5%)
- > Low power handling capacity
- > Practical limitation on Gain (around 30 dB)
- ➤ Poor isolation between the feed and radiating elements
- > Excitation of surface waves
- Tolerance problem requires good quality substrate, which are expensive
- > Polarization purity is difficult to achieve
- > Size is large at lower frequency

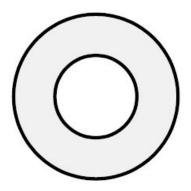

Applications

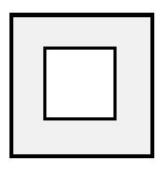

- Pagers and mobile phones
- Doppler and other radars
- > Satellite communication
- > Radio altimeter
- Command guidance and telemetry in missiles
- Feed elements in complex antennas
- > Satellite navigation receiver
- Biomedical radiator

Various Microstrip Antenna Shapes




Square


Circular


Triangular

Semicircular

Annular ring

Square ring