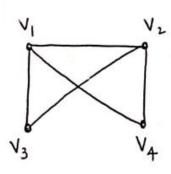


#### SNS COLLEGE OF ENGINEERING Coimbatore – 641 107



**TOPIC:5-Matrix representation of Graphs** 


Adjauncy Malrix

Let G(V, E) be a simple graph, with n vertices ordered from V, to Vn,

then the adjacency matrix  $A = [a_{ij}]_{n \times n}$  of G is an n × n symmetric matrix defined by the elements

$$a_{ij} = \begin{cases} 1 & \text{when } v_i \text{ is adjacent to } v_i \\ 0 & \text{otherwise} \end{cases}$$

It is denoted by AG OY A(G).



$$A_{G_1} = V_2 \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

$$V_4 \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$



### SNS COLLEGE OF ENGINEERING Coimbatore – 641 107

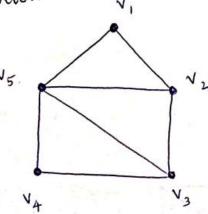


# Properties of Adjauncy Matrix

- (a) An Adjacency matrix completely defines a simple graph.
- (b) The Adjacency matrix is symmetric.

(c) Any element of the Adjacency matrix is either 0 or 1. Therefore it is also called as, bit matrix or boolean matrix.

bit matrix or boolean matrix.


(d) Gi in null  $\iff$  A(G) is the zero matrix of order n.



## SNS COLLEGE OF ENGINEERING Coimbatore - 641 107



1) Obtain the adjacency matrix of the graph
given below.



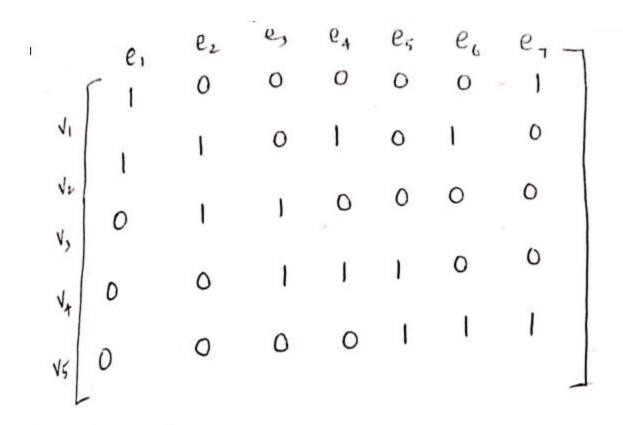
The Adjacency matrix
$$V_{1} \quad V_{2} \quad V_{3} \quad V_{4} \quad V_{5}$$

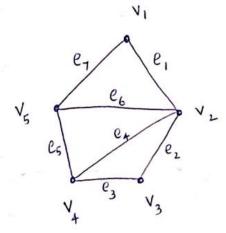
$$A(G) = V_{1} \quad 0 \quad 0 \quad 0 \quad 1$$

$$V_{3} \quad 0 \quad 1 \quad 0 \quad 1$$

$$V_{4} \quad 0 \quad 0 \quad 0 \quad 1$$

$$V_{5} \quad 1 \quad 1 \quad 1 \quad 0$$





## SNS COLLEGE OF ENGINEERING Coimbatore – 641 107



2.

Draw the graph G whose incidence matrix is given below:



