
SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING-IoT Including CS & BCT

COURSE NAME :23ITB201-DATA STRUCTURES & ALGORITHMS

II YEAR / III SEMESTER

Unit IV- TREE ADT

Topic :Multi- Way Search Trees

15-10-2024 Multi- Way Search Trees / 23ITB201-DATA STRUCTURES & ALGORITHMS /Mr.R.Kamalakkannan/CSE-IOT/SNSCE
1

15-10-2024 Multi- Way Search Trees / 23ITB201-DATA STRUCTURES & ALGORITHMS /Mr.R.Kamalakkannan/CSE-IOT/SNSCE 2

The m-way search trees are multi-way trees which are generalised
versions of binary trees where each node contains multiple elements.

In an m-Way tree of order m, each node contains a maximum of m –
1 elements and m children.

The goal of m-Way search tree of height h calls for O(h) no. of accesses
for an insert/delete/retrieval operation.

Hence, it ensures that the height h is close to log_m(n + 1).

https://www.geeksforgeeks.org/binary-tree-data-structure/

15-10-2024
Multi- Way Search Trees / 23ITB201-DATA STRUCTURES & ALGORITHMS /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
3

The number of elements in an m-Way search tree of height h ranges
from a minimum of h to a maximum of mh-1

An m-Way search tree of n elements ranges from a minimum height
of log_m(n+1) to a maximum of n

15-10-2024
Multi- Way Search Trees / 23ITB201-DATA STRUCTURES & ALGORITHMS /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
4

Characteristics of Multiway Trees

A tree data structure called a multiway tree allows each node to
have several offspring.

Multiway trees can have a variety of child nodes, as opposed to
binary trees, where each node can only have a maximum of two
children.

15-10-2024
Multi- Way Search Trees / 23ITB201-DATA STRUCTURES & ALGORITHMS /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
5

Multiway trees key characteristics include:

Node Structure: Each node in a multiway tree has numerous pointers
pointing to the nodes that are its children. From node to node, the number
of pointers may differ.

Root Node: The root node, from which all other nodes can be accessed, is
the node that acts as the tree's origin.

Leaf Nodes: Nodes with no children are known as leaf nodes. Leaf nodes in
a multiway tree can have any number of children, even zero.

Height and Depth: Multiway trees have height (the maximum depth of the
tree) and depth (the distance from the root to a node). The depth and
height of the tree might vary substantially due to the different number of
children.

15-10-2024
Multi- Way Search Trees / 23ITB201-DATA STRUCTURES & ALGORITHMS /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
6

Types of Multi-way Search Trees

There are several types of multi-way search trees, each with unique
features and use cases. The two common types are

1. 2-3

2. B-tree.

15-10-2024
Multi- Way Search Trees / 23ITB201-DATA STRUCTURES & ALGORITHMS /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
7

2-3 Tree

2-3 trees are multi-way search trees with two or three children
per node.

The nodes in a 2-3 tree are sorted so that the smallest key is always in
the leftmost child and the largest key is always in the rightmost child.

They’re often used in applications that require moderate amounts of
data, such as compilers and interpreters.

Let’s look at an example of a 2-3 tree:

15-10-2024
Multi- Way Search Trees / 23ITB201-DATA STRUCTURES & ALGORITHMS /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
8

15-10-2024
Multi- Way Search Trees / 23ITB201-DATA STRUCTURES & ALGORITHMS /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
9

B-Trees

B-trees have a variable number of children per node, typically ranging
from 2 to hundreds.

Like 2-3 trees, B-trees are sorted so that keys are ordered from left to
right.

2-3 trees are designed to optimize disk reads by ensuring that each
node takes up a fixed amount of space on the disk.

This allows for efficient storage and retrieval of large amounts of data
and is commonly used in databases and file systems. Let’s look at an
example of a B-tree:

15-10-2024
Multi- Way Search Trees / 23ITB201-DATA STRUCTURES & ALGORITHMS /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
10

15-10-2024
Multi- Way Search Trees / 23ITB201-DATA STRUCTURES & ALGORITHMS /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
11

Operations on Multiway Trees:

Multiple operations are supported by multiway trees, allowing for
effective data modification and retrieval.

Insertion: Adding a new node to the tree while making sure it
preserves the structure and characteristics of the tree.

Deletion: A node is deleted from the tree while still preserving its
integrity.

15-10-2024
Multi- Way Search Trees / 23ITB201-DATA STRUCTURES & ALGORITHMS /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
12

Search: Finding a particular node or value within the tree using
search.

Traversal: Traversal is the process of going through every node in
the tree in a particular order, such as pre-order, in-order, or post-
order.

Balancing (for B-trees): To maintain quick search and retrieval
times, balancing (for B-trees) involves making sure the tree
maintains its balance after insertions and deletions.

15-10-2024
Multi- Way Search Trees / 23ITB201-DATA STRUCTURES & ALGORITHMS /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
13

Insertion

To insert a new key into a multi-way search tree, we start at the root
node and traverse the tree until we find the appropriate leaf node.

Once we reach the leaf node, we insert the new key into its correct
position.

If the node is already full or becomes full after the insertion, we split it
into two nodes and insert the median key into the parent node.

We repeat his process recursively until the entire tree is balanced.

15-10-2024
Multi- Way Search Trees / 23ITB201-DATA STRUCTURES & ALGORITHMS /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
14

Example

Let’s try to insert number 8 in this tree:

15-10-2024
Multi- Way Search Trees / 23ITB201-DATA STRUCTURES & ALGORITHMS /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
15

15-10-2024
Multi- Way Search Trees / 23ITB201-DATA STRUCTURES & ALGORITHMS /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
16

Starting at the root node, we compare 8 to the keys in the node and
determine that it should be inserted in the rightmost child.
We insert 8 into it.
We promote the middle key (9) to the parent node ([3 7]) to create a
new parent node.
We promote the middle key (7) to create a new parent node.
Now, the tree is balanced and satisfies the properties of a 2-3 tree.

The time complexity of insertion is O(\log N) time, where N is the
number of nodes in the tree.

This is due to the balanced structure of the tree, where each node has
either 2 or 3 children. This ensures that the height of the tree is at
most log base 2 of n.

15-10-2024
Multi- Way Search Trees / 23ITB201-DATA STRUCTURES & ALGORITHMS /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
17

algorithm Insertion23MultiwaySearchTree(T, k):
// INPUT
// T = pointer to the root of the 2-3 tree
// k = the key to be inserted
// OUTPUT
// Updated 2-3 tree T with k inserted

Find the appropriate leaf node N for key k by traversing the
tree from the root

if N has less than 2 keys:
Insert k into N

else:
Split N into two nodes Left and Right with median key m

15-10-2024
Multi- Way Search Trees / 23ITB201-DATA STRUCTURES & ALGORITHMS /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
18

if k < m:
Insert k into Left

else:
Insert k into Right

if N is the root:
Create new root node R with m as its only key and children

Left and Right
else:

Promote m to the parent node of N
Set Left and Right as children of the appropriate keys in the

parent node

if the parent node is now full:
Recursively split the parent node

15-10-2024
Multi- Way Search Trees / 23ITB201-DATA STRUCTURES & ALGORITHMS /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
19

Searching

To search for a key in a multi-way search tree, we start at the root
node and compare the key to the keys in the current node:
1.If the key matches one of the keys in the current node, we return the
corresponding value.
2.If the key is smaller than the smallest key in the current node, we
move to the leftmost child.
3.If the key is larger than the largest key in the current node, we move
to the rightmost child.
4.If the key is between the smallest and largest, we move to the
middle child.
This process is repeated until the key is found or the appropriate leaf
node is reached.

15-10-2024
Multi- Way Search Trees / 23ITB201-DATA STRUCTURES & ALGORITHMS /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
20

Example
For example, let’s try to find 11 in this tree:

15-10-2024
Multi- Way Search Trees / 23ITB201-DATA STRUCTURES & ALGORITHMS /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
21

We begin at the root node to search for the key 11 in the above example.
Since 11 is between 10 and 20, we move to the middle child.
The middle child node contains keys [12, 15], and since 11 is less than
12, we move to the left child of the middle node.

The left child node contains no keys, so we have reached a leaf node, and
the key 11 is not found in the tree.

The time complexity of search in a multi-way search tree is also O(log N)
in the average and worst cases.

This is because the tree is balanced, and each node can have at most 3
children, reducing the search space by a factor of 3 at each level.

Therefore, the search operation takes logarithmic time in the worst case.

15-10-2024
Multi- Way Search Trees / 23ITB201-DATA STRUCTURES & ALGORITHMS /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
22

algorithm SearchIn23Tree(T, k):
// INPUT
// T = a 2-3 multi-way search tree
// k = a key to search for
// OUTPUT
// The value associated with k if it exists in T, otherwise null

currentNode <- the root node of T

while currentNode is not a leaf node:
if k is equal to the first key in currentNode:

return the value associated with the first key

else if k is equal to the second key in currentNode:

15-10-2024
Multi- Way Search Trees / 23ITB201-DATA STRUCTURES & ALGORITHMS /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
23

return the value associated with the second key

else if k is less than the first key in currentNode:
currentNode <- left child of currentNode

else if k is greater than the second key in currentNode:
currentNode <- rightmost child of currentNode

else:
currentNode <- middle child of currentNode

if k is equal to the first key in currentNode:
return the value associated with the first key

else:
return null

15-10-2024
Multi- Way Search Trees / 23ITB201-DATA STRUCTURES & ALGORITHMS /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE
24

Advantages of Multi-Way Search Trees

Multi-way search trees have several advantages over binary search
trees, including.

Compared to binary search trees, they require fewer internal nodes
to store items.

Due to their fixed height, balanced multi-way search trees can be
efficiently stored on disk and accessed quickly.

Finally, multi-way search trees are generally easier to implement than
other advanced data structures like AVL and red-black trees, which
have stricter balancing requirements.

15-10-2024
Multi- Way Search Trees / 23ITB201-DATA STRUCTURES & ALGORITHMS /Mr.R.Kamalakkannan/CSE-

IOT/SNSCE

Any Query????

Thank you……

25

