SNS COLLEGE OF ENGINEERING COIMBATORE-641 107 ENGINEERING MATHEMATICS-I

UNIT I MATRICES PART A

Remember:

1. Find the sum and product of all the eigen values of $\begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix}$. 2. Given $A = \begin{pmatrix} -1 & 0 & 0 \\ 2 & -3 & 0 \\ 1 & 4 & 2 \end{pmatrix}$. Find the eigen values of A^2 . 3. Find the eigen values of A^{-1} where $A = \begin{pmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{pmatrix}$. 4. Find the eigen values of the inverse of the matrix $A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 3 & 4 \\ 0 & 0 & 4 \end{pmatrix}$. 5. If 3 and 6 are the two eigen values of $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix}$, write down all the eigen values of A^{-1} . 6. The product of two eigen values of $\begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix}$ is 16. Find the third eigen value of A.

Understand:

- 7. State Cayley-Hamilton theorem
- 8. Can A= $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ be diagonalized? Why?

Apply:

9. Using Cayley Hamilton theorem to find $(A^4-4A^3-5A^2+A+2I)$ when $A = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$. 10. Check whether the matrix B is orthogonal? Justify. $B = \begin{pmatrix} cos\theta & sin\theta & 0 \\ -sin\theta & cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

PART-B

Remember:

1. Find the characteristic equation of the matrix A given $A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$. Hence

find A^{-1} and A^4 .

2. If $A = \begin{pmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{pmatrix}$, verify Cayley-Hamilton theorem and hence find A⁻¹.

3. Find the eigen values and eigen vectors of the matrix $\begin{bmatrix} 11 & -4 & -7 \\ 7 & -2 & -5 \\ 10 & -4 & -6 \end{bmatrix}$.

Apply:

- 1. Reduce the quadratic form $x^2 + 5y^2 + z^2 + 2xy + 2yz + 6zx$ to canonical form and hence find its rank.
- 2. Reduce the quadratic form $6x^2 + 3y^2 + 3z^2 4xy 2yz + 4zx$ into canonical form by an orthogonal reduction. Hence find its rank and nature.
- Reduce the quadratic form 10x₁² + 2x₂² + 5x₃² + 6x₂x₃ 4x₃x₁ 4x₁x₂ to a canonical form through an orthogonal transformation and hence find rank, index, signature, nature and also give non-zero set of values for x₁, x₂, x₃(if they exist), that will make the quadratic form zero.

Analyze

4. Show that the matrix $\begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 0 \\ 2 & 0 & 3 \end{pmatrix}$ satisfies the characteristic equation and hence find

its inverse

5. Verify Cayley-Hamilton theorem for the matrix $A = \begin{pmatrix} 1 & -2 & 3 \\ 2 & 4 & -2 \\ -1 & 1 & 2 \end{pmatrix}$

UNIT II SEQUENCE AND SERIES PART A

Remember:

- 1. Define limit of a sequence.
- 2. Describe convergence sequence.
- 3. Find the nature of the series $1+2+3+4+\ldots+n+\ldots$
- 4. Define Bounded sequence
- 5. Define oscillating sequence with example.
- 6. Define monotonic sequence

Understand:

7. Distinguish between sequence and series.

- 8. Give an example for decreasing and increasing sequence.
- 9. State the necessary conditions for convergence.

10. Using comparison test, prove that the series $\frac{1}{1.2} + \frac{2}{3.5} + \frac{3}{5.7} + \frac{4}{7.9} + \cdots$ is divergent.

Analyse:

11. Test the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$ 12. Test the convergence for the sequence $\left\{\frac{1}{n}\right\}_{n=1}^{n=\infty}$. 13. Test the convergence of the series $1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots \infty$ 14. Test the convergence of the series $\frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \cdots + \frac{1}{n!}$ 15. Test whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1}$ is convergent or not **PART-B**

Remember:

- 1. Find the nature of the series $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$ by Cauchy's integral test.
- 2. Determine the convergence of the alternating series $\sum_{n=1}^{\infty} \frac{\cos n\pi}{n^2+1}$ for absolute and conditional convergence.

Understand:

3. Discuss the convergence and divergence of the following series

$$\frac{1}{2^3} - \frac{1}{3^3}(1+2) + \frac{1}{4^3}(1+2+3) - \frac{1}{5^3}(1+2+3+4)...$$

Apply:

- 4. Show that the direct summation of **n** terms that the series $\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \cdots$ is convergent.
- 5. Using comparison test, examine the convergence of the series

$$\frac{1}{1.2.3} + \frac{3}{2.3.4} + \frac{5}{3.4.5} + \dots \infty \ .$$

6. Using D' Alembert's ratio test, examine the convergence or divergence of the series **Analyse:**

- 7. Test the convergence of the series $\frac{1}{4 \cdot 7 \cdot 10} + \frac{4}{7 \cdot 10 \cdot 13} + \frac{9}{10 \cdot 13 \cdot 16} + \cdots$
- 8. Test the convergence of the series $\sum_{n=0}^{\infty} n e^{-n^2}$.
- 9. Test the convergence of the series $1 + \frac{3}{7}x + \frac{3.6}{7.10}x^2 + \frac{3.6.9}{7.10.13}x^3 + \dots$

by D' Alembert's ratio test

10. Test the convergence of the series $1 + \frac{2^p}{2!} + \frac{3^p}{3!} + \frac{4^p}{4!} + \cdots$ by D' Alembert's ratio test.

UNIT-III APPLICATIONS OF DIFFERENTIAL CALCULUS PART A

Remember:

- 1) For the centenary $y = c \cosh \frac{x}{c}$, find the curvature.
- 2) Find the radius of curvature for $y=e^x$ at the point where it cuts the y-axis.
- 3) Define circle of curvature.
- 4) Find the centre of curvature for $y=x^2$ at the origin.
- 5) Find the curvature of the curve $2x^2+2y^2+x-2y+1=0$.
- 6) Find the envelope of the family of straight lines $y = mx + \frac{1}{m}$, where m is a parameter.
- 7) Find the envelope of the lines $\frac{x}{t} + yt = 2c$, t being a parameter.
- 8) Find the envelope of the straight lines $x\cos\theta + y\sin\theta = \alpha$ where θ is the parameter.

PART-B

Remember:

- 1. Find the radius of curvature of the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$ at $\left(\frac{a}{4}, \frac{a}{4}\right)$.
- 2. Find the equation of the circle of curvature at $\left(\frac{a}{4}, \frac{a}{4}\right)$ on $\sqrt{x} + \sqrt{y} = \sqrt{a}$.
- 3. Find the equation of the circle of curvature of the parabola $y^2 = 12x$ at the point (3,6).
- 4. Find the equation of the circle of curvature of the rectangular hyperbola xy=12 at the point (3,4).
- 5. Find the radius of curvature at the point (0,c) on the curve $y = c \cosh \frac{x}{c}$.
- 6. the point $\left(\frac{3a}{2}, \frac{3a}{2}\right)$ on the curve $x^3+y^3=3axy$.
- 7. Find the radius of the curvature of the curve $x^3+xy^2-6y^2=0$ at (3,3).
- 8. Find the evolute of the cycloid $x = a(\theta \sin \theta), y = a(1 \cos \theta)$.
- 9. Find the evolute of $\sqrt{x} + \sqrt{y} = \sqrt{a}$.

Apply:

10. Prove that the radius of the curve $xy^2 = a^3 - x^3$ at the point (a,0) is $\frac{3a}{2}$.

11. If $y = \frac{ax}{a+x}$, prove that $\left(\frac{2\rho}{a}\right)^{2/3} = \left(\frac{x}{y}\right)^2 + \left(\frac{y}{x}\right)^2$, where ρ is the radius of curvature.

12. Show that the evolutes of the parabola $y^2 = 4ax$ is the curve $27ay^2 = 4(x-2a)^3$

UNIT-IV

DIFFERENTIAL CALCULUS OF SEVERAL VARIABLES PART A

Remember:

11. If
$$u = \frac{x}{y} + \frac{y}{z} + \frac{z}{x}$$
, find $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z}$
12. Find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$ if $u=y^x$.
13. Given $u(x, y) = x^2 \tan^{-1}\left(\frac{y}{x}\right)$, find the value of $x^2u_{xx} + 2xyu_{xy} + y^2u_{yy}$.
14. If $u = f(y-z, z-x, x-y)$, $find\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z}$.
15. If $u = x^2 + y^2$ and $x = at^2$, $y = 2at$ find $\frac{du}{dt}$.
16. If $u = x^3y^2 + x^2y^3$ where $x = at^2$, $y = 2at$ then find $\frac{du}{dt}$.
17. Find $\frac{du}{dt}$ if $u=\sin(x/y)$, where $x=e^t$, $y=t^2$.
18. If $x^y+y^x=1$, then find $\frac{dy}{dx}$.

Understand:

19. State the conditions for maxima minima of f(x,y).

Apply:

- 20. Using Eulers theorem, given u(x,y) is a homogeneous function of degree n, prove that $x^2u_{xx} + 2xyu_{xy} + y^2u_{yy} = n(n-1)u$.
- 21. If $u = x^y$, show that $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$.
- 22. Using the definition of total derivative, find the value of $\frac{du}{dt}givenu = y^2 4ax; x = at^2, y = 2at.$

PART-B

Remember:

- 1. If $u = \log(\tan x + \tan y + \tan z)$, find $\sum \sin 2x \frac{\partial u}{\partial x}$.
- 2. If u=xy+yz+zx where $x=\frac{1}{t}$, $y=e^{t}$ and $z=e^{-t}$ find $\frac{dy}{dt}$.

3. If
$$u = (x - y)f\left(\frac{y}{x}\right)$$
, then find $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$.

- 4. Find the Taylor expansion of $x^2y^2 + 2x^2y + 3xy^2$ in powers of (x+2) and (y-1) up to 3^{rd} degree terms.
- 5. Find the Taylor series expansion of $e^x \sin y$ at the point $(1, \pi/4)$ up to 3^{rd} degree terms.
- 6. Find the maximum value of $x^m y^n z^p$ subject to the condition x + y + z = a.
- 7. Find the extreme value of $x^2 + y^2 + z^2$ subject to the condition x + y + z = 3a.
- 8. A rectangular box open at the top, is to have a volume of 32cc. Find the dimensions of the box, that requires the least materials for its construction.
- 9. A rectangular box open at the top, is to have the capacity of 108 cu.ms. Find the dimensions of the box, requiring the least materials for its construction.
- 10. Find the dimensions of the rectangular box, open at the top, of maximum capacity whose surface area is 432 square meter.

Understand:

- 11. Discuss the maxima minima of the function $f(x, y) = x^4 + y^4 2x^2 + 4xy 2y^2$.
- 12. Discuss the maxima and minima of $f(x, y) = x^3 y^2 (1 x y)$.

Apply:

13. If $u=x^y$, show that $u_{xxy}=u_{xyx}$.

14. If
$$u = \log(x^2 + y^2) + \tan^{-1}\left(\frac{y}{x}\right)$$
 prove that $u_{xx} + u_{yy} = 0$.

15.
$$w = f(y - z, z - x, x - y)$$
, then show that $\frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} + \frac{\partial w}{\partial z} = 0$.

16. If z = f(x, y), where $x = u^2 - v^2$, y = 2uv, prove that

$$\frac{\partial^2 z}{\partial u^2} + \frac{\partial^2 z}{\partial v^2} = 4(u^2 + v^2) \left(\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} \right).$$

17. If $x = u \cos \alpha - v \sin \alpha$, $y = u \sin \alpha + v \cos \alpha$ and v = f(x, y), show that

$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = \frac{\partial^2 v}{\partial u^2} + \frac{\partial^2 v}{\partial v^2}.$$

- 18. Use Taylor formula to expand the function defined by $f(x, y) = x^3 + y^3 + xy^2$ in powers of (x-1) and (y-2).
- 19. Expand $x^2y + 3y 2$ in powers of (x-1) and (y+2) up to 3^{rd} degree terms.
- 20. Expand $e^x \sin y$ in powers of x and y as far as the terms of the 3rd degree using Taylor expansion.

Analyze:

21. Test for maxima minima for the function $f(x, y) = x^3 + y^3 - 12x - 3y + 20$.

22. Test for an extrema of the function $f(x, y) = x^4 + y^4 - x^2 - y^2 - 1$.

23. Examine the function $f(x, y) = x^3 y^2 (12 - x - y)$ for extreme values.

24. Test for maxima minima of the function $f(x, y) = x^3 y^2 (6 - x - y)$.

UNIT V PART A(Question Bank)

1. Solve the equation $(D^2-6D+13)y=0$.

2. Solve
$$\frac{d^2 y}{dx^2} + 2\frac{dy}{dx} + y = 0$$

3. Solve $(D^3 + D^2 + 4D + 4)y = 0$
4. Find the PI of $(D^2 - 9)y = e^{-3x}$.
5. Find the PI of $(D^2 + 4)y = \sin 2x$
6. Find the PI of $(D^2 + 2D + 1)y = e^{-x}\cos x$.
7. Solve the equation $x^2\frac{d^2y}{dx^2} + 4x\frac{dy}{dx} + 2y = 0$

8. Solve
$$x^2y^{11}-xy^1+y=0$$

PART-B(Question Bank)

- 1. Solve the equation $(D^2+a^2)y = secax$ by the method of variation of parameters
- 2. Solve $\frac{d^2y}{dx^2} + 4y = \tan 2x$ by the method of variation of parameters $\frac{d^2y}{d^2y}$
- 3. Solve $\frac{d^2y}{dx^2}$ + y= cosecx by the method of variation of parameters
- 4. Solve $(D^2+1)y = x \sin x$ by the method of variation of parameters
- 5. Solve the equation $(D^2-3D+2)y = 2\cos((2x+3)+2)e^x$.
- 6. Solve $(D^2-4D+3)y = \cos 2x+2x^2$.
- 7. Solve $(D^2+3D+2)y = \sin 2x + x^2$.
- 8. Solve the equation $(D^2+5D+4)y = e^{-x} \sin 2x$
- 9. Solve $(D^2+2D+5)y = e^{-x}x^2$.
- 10.Solve the equation $(D^2+4)y=x^2\cos 2x$.
- 11.Solve $(x^2D^2-2xD-4)y=x^2+2\log x$ by Euler's (Cauchy's) method
- 12.Solve $(x^2D^2-3xD+4)y = x^2\cos(\log x)$ by Euler's(Cauchy's) method