

SNS COLLEGE OF ENGINEERING Coimbatore - 641 107

TOPIC:1.- Algebraic systems

Algebraic System

A non-empty set G together with one or more n-ary operations say * (binary) is called an algebraic system or algebraic structure.

we denote it by [G,*]

Properties of Binary operations

Let the binary operation be *: G×G→G

Then we have the following properties:

(1) closure Property

 $a * b = x \in G$, for all $a, b \in G$

(2) Commutativity

a * b = b * a, for all $a, b \in G_1$.

SNS COLLEGE OF ENGINEERING Coimbatore – 641 107

(3) Associativity

(a * b) * c = a * (b * c), for all a, b ∈ G

(4) Identity element

a * e = e * a = a, for all $a \in G$.

'e' is called the identity element.

(5) Inverse element

 $a \times b = b \times a = e$ (identity), then
b' is called the inverse of a and it is

denoted by b = a-1.

(6) Distributive properties

a * (b = c) = (d */b) * e

$$= (a * b) \cdot (a * c)$$

 $(b \cdot c) * a = (b * a) \cdot (c * a)$

for all a,b,c & Gi.

SNS COLLEGE OF ENGINEERING Coimbatore – 641 107

(7) Cancellation properties
$$a * b = a * c \Rightarrow b = c$$

$$b * a = c * a \Rightarrow b = c$$
for all a, b, c \in G.

Example

(i) The set of integers \mathbb{Z} with the binary operations with usual addition, subtraction and multiplication u) $(\mathbb{Z},+)$, $(\mathbb{Z},-)$, (\mathbb{Z},\times) is an algebraic system.

(ii) The set of real number R with the usual + and x as binary operations is an algebraic system.