

TOPIC:3- Groups

Groups

A non-empty set G together with the binary operation *, i) (G, *) is called a group if * satisfies the following conditions

- (i) closure: axb & G + a,b & G
- (ii) Associative: (axb) *C = ax(b*C), Va, b, CEG
- (iii) Identity: \exists an element $e \in G$, such that a * e = e * a = a, \forall $a \in G$.

 Hun e is called the identity element
- (iv) I werse: There exists an element $a' \in G$ called the inverse of 'a' such that a * a' = a' * a = e, $\forall a \in G$.

Abelian Group

In a group (G, *), if a * b = b * a, $\forall a, b \in G$, then the group (G, *) is called an obelian group.

Example (Z, +) is an abelian group.

Problems based on Groups

1)

Prove that a group
$$(G, *)$$
 is abelian iff

 $(a * b)^{2} = a^{2} * b^{2}$, $\forall a, b \in G$.

Assume that G_{1} is abelian.

 $a * b = b * a$, $a, b \in G_{1} \rightarrow 0$
 $a^{2} * b^{2} = (a * a) * (b * b)$
 $= a * [a * (b * b)]$
 $= a * [(a * b) * b]$

Association

 $= a * [(b * a) * b]$
 $= (a * b) * (a * b)$

Associative

 $a^{2} * b^{2} = (a * b)^{2}$

2)

Show that $(Q^{\dagger}, *)$ is an abelian group where * is defined by $a * b = \frac{ab}{2}$, $* a, b \in Q^{\dagger}$. Here Q^{\dagger} is the set of all positive rational number (1) closure $\text{clearly} \cdot a * b = \frac{ab}{2} \in Q^{\dagger}$

(3) Identity

$$\Rightarrow \frac{\alpha e}{2} = \alpha \Rightarrow e = 2$$

.. Identity element is
$$e = a \in Q^{\dagger}$$

(4) Inverse Let
$$a^{-1}$$
 be the inverse of a^{-1} .
Then $a * a^{-1} = e = 2$

$$\Rightarrow \frac{aa^{-1}}{2} = 2 \Rightarrow a^{-1} = \frac{4}{a}$$

.. Inverse of a is
$$a^{-1} = \frac{4}{a} \in Q^{+}$$
.

(5) Commutative

Now
$$a * b = \frac{ab}{2}$$

$$b * a = \frac{ba}{2} = \frac{ab}{2}$$

$$\therefore a * b = b * a \quad \forall a, b \in Q^{\dagger}$$

3)

Prove that the set $A = \{1, w, w^2\}$ is an ibelian group of order 3 under usual multiplication where $1, w, w^2$ are cube roots of unity and $w^3 = 1$. The following is the composition table of the

The following is the composition table of the dements in A with usual multiplication.

0	1	w	w²
1	i	ω	w
w	w	ພ້	1
w ²	w ²	1	w

Coimbatore – 641 107

(1) closure

All the elements in the above table are the elements of A. Hence A is closed under

- (2) Associative clearly multiplication of complex numbers are associative.
- (3) Identity The identity element is I E A
 - Imerse (A)

From the table, we have $\omega \cdot \omega^2 = \omega^2 \cdot \omega = \omega^3 \text{ etc.}$ Hence (A,.) is our abelian group.