

## **SNS COLLEGE OF ENGINEERING**

Kurumbapalayam(Po), Coimbatore – 641 107 Accredited by NAAC-UGC with 'A' Grade Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

### Department of Artificial Intelligence and Data Science

SOWMIYA R/AP/AI&DS/SNSCE/DATA VISULAIZATION

10/16/2024







# **Designer Perspectives-Affordances**



**SOWMIYA R/AP/A**I&DS/SNSCE/DATA VISULAIZATION





### **Importance of Design**

- Designers are essential in converting complex data into visual formats that are easier to understand.
- Good design helps audiences engage with the data and derive insights effectively.









## **Clarity and Simplicity**

- > Objective: The primary goal of data visualization is to make complex information clear.
- > Strategies: Use minimalist design principles, limit the number of visual elements, and focus on the most important data. This helps avoid overwhelming users and allows them to focus on key insights.







### **User-Centered Approach**

- > Understanding the Audience: Designers must identify the target users' knowledge levels, needs, and goals. For instance, a visualization aimed at data scientists may include more technical detail compared to one for a general audience.
- > User Testing: Conduct usability testing with real users to gather feedback on how well the visualization meets their needs. This helps identify areas for improvement.





### **Effective Use of Visual Elements**

- **Understanding the Audience:** Designers must identify the target users' knowledge levels, needs, and goals. For instance, a visualization aimed at data scientists may include more technical detail compared to one for a general audience.
- > User Testing: Conduct usability testing with real users to gather feedback on how well the visualization meets their needs. This helps identify areas for improvement.





### **Affordances Defined**

- Concept: Affordances refer to the qualities of design elements that suggest how they should be used. In data visualization, they help users understand how to interact with visual elements.
- Importance: Effective affordances reduce the learning curve and enhance user engagement, leading to a better understanding of the data.









## **Types of Affordances**

- **Physical Affordances:** These are visual characteristics that suggest interaction. For instance, a button that looks raised implies it can be clicked.
- Perceptual Affordances: These help users interpret the data. For example, a gradient color scheme can suggest progression or intensity.
- **Functional Affordances:** These indicate what users can do with the visualization, such as filtering data or zooming in on a chart. Clearly marked features empower users to interact meaningfully with the data.





## **Interaction and Engagement**

- **Interactive Features:** Adding elements like hover effects, tooltips, and sliders makes visualizations dynamic. For example, tooltips can provide additional context when users hover over data points, enriching their understanding.
- > Encouraging Exploration: Interactive visualizations allow users to manipulate data (e.g., filtering or changing views), fostering a deeper engagement with the content.







## **Storytelling with Data**

- > Narrative Structure: Data should be presented in a way that tells a story. This involves guiding users through the data, emphasizing important points, and creating a logical flow.
- > Visual Cues: Use arrows, annotations, or highlights to draw attention to key trends or anomalies, helping users follow the narrative.







## **Accessibility Considerations**

**Inclusive Design:** Ensure that visualizations are accessible to all users, including those

with disabilities. This can include:

- $\blacktriangleright$  High color contrast for readability.
- Descriptive text for images and graphs (alt text).
- Keyboard navigation for users who cannot use a mouse.

**User Testing for Accessibility:** Include users with disabilities in testing to ensure that visualizations are usable for everyone.

10/16/2024

SOWMIYA R/AP/AI&DS/SNSCE/DATA VISULAIZATION







## **Consistency in Design**

### **Visual Cohesion:**

- Maintain a consistent visual language throughout the visualization.
- This includes using a limited color palette and consistent fonts and styles.
- Consistency helps users understand and navigate the data more easily.







## Contextualization

### **Providing Context:**

- > Include legends, labels, and supplementary information to help users interpret the data correctly.
- Context can clarify what the data represents, how it was collected, and any relevant background information.

### **Data Source:**

> Clearly indicate where the data comes from, adding credibility and context to the visualization.







### **Feedback and Iteration**

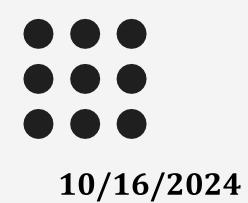
### **Continuous Improvement:**

- Design is not a one-time process.
- Gather feedback from users and stakeholders to identify areas for improvement.
- Iteration based on user insights leads to more effective visualizations.

### **Prototyping:**

- Create prototypes and test them before finalizing designs.
- $\succ$  This allows for experimentation and helps catch issues early.

10/16/2024


SOWMIYA R/AP/AI&DS/SNSCE/DATA VISULAIZATION











SOWMIYA R/AP/AI&DS/SNSCE/DATA VISULAIZATION





