

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641 107

AN AUTONOMOUS INSTITUTION

Approved by AICTE, New Delhi and Affiliated to Anna University, Chennai

23MAT201-DISCRETE MATHEMATICAL STRUCTURES

INTERNAL ASSESSEMENT II QUESTION BANK

UNIT-II-COMBINATORICS PART-A

1. In how many ways can all the letters in "MATHEMATICAL" be arranged? Solution: In the word "MATHEMATICAL" has 12 letters. The letter M appears 2 times, the letter A appears 3 times, the letter T appears 2 times and the remaining 5 letters H,E,I,C,L appears only once.

Therefore the required number of permutations $=\frac{12!}{2!3!2!1!1!1!1!1!} = \frac{12!}{24} = 19958400$

- 2. In how many ways can all the letters in "MALAYALAM" be arranged?
- 3. Twelve students want to place order of different ice-creams in a ice-cream parlour, which has six type of ice-creams. Find the number of orders that the twelve students can place. Solution:

Number of types of ice-creams n=6

Number of ice-creams to be selected = 12

Therefore the number of ways to choose 12 ice-creams = C (n+r-1, r)

= C (6+12-1, 12)
= C (17, 12)
= C(17, 5) =
$$\frac{17.16.15.14.13}{1.2.3.4.5}$$
 = 6188.

4. Find the recurrence relation for the Fibonacci sequence.

Solution: The sequence of numbers

0, 1, 1, 2, 3, 5, 8, 13.....is the Fibonacci sequence of numbers. Then the recurrence relation corresponding to the Fibonacci sequence is $F_{n+2} = F_{n+1} + F_n$; n≥0 with the initial conditions $F_0 = 0$, $F_1=1$.

5. Find the recurrence relation satisfying the equation $y_n = A(3)^n + B(-4)^n$. Solution:

$$y_n = A(3)^n + B(-4)^n \dots \dots \dots \dots (1)$$

$$y_{n+1} = A(3)^{n+1} + B(-4)^{n+1}$$

$$= 3A(3)^n + (-4)B(-4)^n \dots (2)$$

$$y_{n+2} = A(3)^{n+2} + B(-4)^{n+2}$$

= $9A(3)^n + 16B(-4)^n$(3) Eliminating A and B from (1), (2) and (3) we get

$$\begin{vmatrix} y_n & 1 & 1 \\ y_{n+1} & 3 & -4 \\ y_{n+2} & 9 & 16 \end{vmatrix} = 0$$

$$y_n(48+36) - 1(16y_{n+1} + 4y_n + 2) + 1(9y_{n+1} - 3y_{n+2}) = 0$$

$$84y_n - 16y_{n+1} - 4y_{n+2} + 9y_{n+1} - 3y_{n+2} = 0$$

$$84y_n - 7y_{n+1} - 7y_{n+2} = 0$$

$$12y_n - y_{n+1} - y_{n+2} = 0$$

i.e., $y_{n+2} + y_{n+1} - 12y_n = 0$

6. Solve $a_k = 3a_{k-1}$, for $k \ge 1$, with $a_0=2$. Solution:

> Given $a_k = 3a_{k-1}, k \ge 1$ i.e., $a_k-3a_{k-1} = 0$ (1) The characteristics equation is $r-3 = 0 \Rightarrow r=3$ Solution $a_k = A \ 3^k$(2) Given $a_0=2$, sub in equ.(2) $A \ 3^0=2 \Rightarrow A=2$. Therefore equ.(2) becomes $a_k = 2.3^k$, $k\ge 0$ is the required solution.

7. Solve the recurrence relation y(k) - 8y(k-1) + 16y(k-2) = 0 for $k \ge 2$, where y(2) = 16 & y(3) = 80.

Solution:

The recurrence relation can be written as $y_k - 8y_{k-1} + 16y_{k-2} = 0$ The characteristic equation is $r^2 \cdot 8r + 16 = 0$ $(r-2)^2 = 0 \Rightarrow r=4,4$ The solution is $y(k) = (A + Bk)4^k \dots \dots (1)$ Given $y_2 = 16$ Put k=2 in (1), we get $y(2) = (A + B2)4^2 = 16$ 16(A + 2B) = 16 $\Rightarrow A + 2B = 1 \dots \dots (2)$ Put k=3 in (1), we get $y(3) = (A + B3)4^3 = 80$ 64(A + 3B) = 80 $\Rightarrow A + 3B = \frac{5}{4} \dots (3)$ Solving (2) and (3), we get $A = \frac{1}{2}, B = \frac{1}{4}$. Substituting these values in (1), we get $y(k) = (\frac{1}{2} + \frac{1}{4}k)4^k$ $y(k) = (2 + k)4^{k-1}$.

8. Write the generating function for the sequence 1, a, a², a³, a⁴... Solution:

The generating function of 1, a, a^2 , a^3 , a^4 ... is

$$G(x) = 1 + ax + a^{2}x^{2} + a^{3}x^{3} + a^{4}x^{4} + \dots$$

= 1+(ax) + (ax)^{2} + (ax)^{3} + (ax)^{4} + \dots
= (1-ax)⁻¹
$$G(x) = \frac{1}{1-ax} \text{ for } |ax| < 1.$$

UNIT III - GRAPHS PART-A

1. Define Pseudo Graph.

Solution: A graph having loops but no multiple edges is called a Pseudo Graph. **E.g.:**

2. Define pendent vertex in a graph.

Solution: If the degree of a vertex is one, then that vertex is called pendent vertex.

3. State the Handshaking theorem.

Solution: If G = (V, E) is an undirected graph with 'm' edges, then $\sum_{i} \deg(v_i) = 2m$.

4. Define complete graph and give an example. Solution:

A simple graph in which there is an edge between each pair of distinct vertices is called a complete graph.

The complete graph on 'n' vertices is denoted by k_n.

E.g.:

5. Define a regular graph. can a complete graph be a regular graph? Solution:

If every vertex of a simple graph has the same degree, then the graph is called a regular

graph. E.g: - 2- Regular graph

Every complete graph is regular.

6. When a simple graph G is bipartite? Give an example.

Solution:

A simple graph G is bipartite if its vertex set V can be divided into two disjoint subsets A and B such that every edge in G joins a vertex in A to a vertex in B.

7. Draw the complete bipartite graphs k_{2,3} and k_{3,3}.

8. Define complement of a graph.

Solution:

Let G be a graph with n vertices, then k_n -G is called the complement of G. It is denoted

by *G*.

9. Define adjacency matrices with an example. Solution:

When G is a simple graph with 'n' vertices v_1, v_2, \dots, v_n , the matrix $A(\text{or } A_G) \equiv [a_{ij}]$, where $a_{ij} = \begin{cases} 1, & \text{if } v_i \text{ is adjacent to } v_j \\ 0, & \text{otherwise} \end{cases}$

E.g.: Consider the graph

V1

V2

10. Obtain the adjacency matrix of the graph given below.

Solution:

$$A(G) = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{bmatrix}.$$

11. Define isomorphism of two graphs.

Solution:

Two graphs G_1 and G_2 are said to be isomorphic to each other, if there exists a one to one correspondence between the vertex sets which preserves adjacency of the vertices.

12. State whether the following graphs are isomorphic or not.

Solution:

Here both G₁ and G₂ have

 G_1

(1) Same number of vertices (5) (2) Same number of edges (6) $d(v_1) = 2$, $d(v_2) = 3$, $d(v_3) = 2$, $d(v_4) = 4$, $d(v_5) = 1$ $d(u_1) = 4$, $d(u_2) = 2$, $d(u_3) = 3$, $d(u_4) = 2$, $d(u_5) = 1$ If f: $v(G_1) \rightarrow v(G_2)$ defined by $v_1 \rightarrow u_2$ $v_2 \rightarrow u_3$ $v_3 \rightarrow u_4$ $v_4 \rightarrow u_1$ $v_5 \rightarrow u_5$ then the adjacency matrix

$$A(G_1) = \begin{bmatrix} v_1 & v_2 & v_3 & v_4 & v_5 \\ 0 & 1 & 0 & 1 & 0 \\ v_2 & v_3 & v_4 & v_1 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ v_4 & v_5 & v_5 & 0 & 0 & 1 & 0 \end{bmatrix}$$
$$A(G_2) = \begin{bmatrix} u_2 & u_3 & u_4 & u_1 & u_5 \\ 0 & 1 & 0 & 1 & 0 \\ u_4 & u_1 & 0 & 1 & 0 \\ u_1 & 1 & 1 & 0 & 1 \\ u_5 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Here
$$A(G_1) = A(G_2)$$
.

Therefore the graphs G_1 and G_2 are isomorphic.

13. Define Strongly connected graph.

Solution:

A directed graph is said to be strongly connected, if there is a path from v_i to v_j and from v_j to v_i where v_i and v_j are any pair of vertices of the graph.

14. State the necessary and sufficient conditions for the existence for the existence of an Eulerian path in a connected graph.

Solution:

A connected graph contains an Euler path if and only if it has exactly two vertices of odd degree.

15. Give an example of a non-Eulerian graph which is Hamiltonian.

Solution:

deg(A) = 3, deg(B) = 3 deg(C) = 3, deg(E) = 3 and deg(D) = 3.

Here 4 vertices are each of degree 3(not even), therefore the given graph is non-Eulerian.

Given graph is Hamiltonian. The Hamiltonian circuit is A-B-C-D-E-A.

UNIT-II COMBINATORICS PART-B

Problems based on Recurrence relation:

- 1. Solve the recurrence relation $a_{n+1}-a_n=3n^2-n$, $n\geq 0$, $a_0=3$.
- 2. Solve the recurrence relation $a_{n+2}-6a_{n+1}+9a_n=3(2^n)+7(3^n)$, $n\geq 0$ given that $a_0=1$ and $a_1=4$.
- 3. Solve the recurrence relation $a_{n+2}-5a_{n+1}+6a_n=2^n \forall n \ge 2$ if $a_0=3$ and $a_1=35$.
- 4. What is the recurrence solution of recurrence relation? $a_n=5a_{n-1}-6a_{n-2}=0$, with, $a_0=1$, $a_1=0$.
- 5. Solve a_{n+2} 5 a_{n+1} + 6 a_n = 2^n , with condition the initial a_0 = 1, a_1 = -1.

Problems based on Generating functions:

- 6. Using generating functions to solve the recurrence relation $a_{n+2}-8a_{n+1}+15a_n=0$, $n \ge 0$ with, $a_0=2$, $a_1=8$.
- 7. Use the generating functions to solve the recurrence relation $a_n+3a_{n-1}-4a_{n-2}=0$, $n \ge 2$ with the initial condition $a_0=3$, $a_1=-2$
- 8. Use the method of generating functions to solve the recurrence relation $a_n=4a_{n-1}-4a_{n-2}+4^n$; $n \ge 2$ given that $a_0=2, a_1=8$.
- 9. Using generating functions to solve the recurrence relation $a_{n+2}-2a_{n+1}+a_n=2^n$, $n \ge 0$ with, $a_0=2$. $a_1=1$
- 10. Using generating function, solve the difference equation $y_{n+2}-y_{n+1}-6y_n=0$, $y_1=1$, $y_0=2$
- 11. Using generating function, solve the difference equation $s_n+3s_{n-1}-4s_{n-2}=0$ with $n \ge 2$ $s_0=3, s_1=2$
- 12. Solve G(k) 7 G(k-1) + 10G(k-2) = 8k + 6, for $k \ge 2 S(0) = 1$, S(1) = 2.

Problems based on Inclusion and Exclusion:

- 13. Find the number of integers between 1 and 250 both inclusive that are divisible by any of the integers 2,3,5,7.
- 14. Determine the number of positive integers n, 1≤n≤1000 that are not divisible by 2,3 or 5 but are divisible by 7.
- 15. Determine the number of positive integers n, 1≤n≤2000 that are not divisible by 2,3 or 5 but are divisible by 7.

UNIT III - GRAPHS -PART-B

Theorems based on Hand shaking theorem:

- 1. Prove that an undirected graph has an even number of vertices of odd degree. <u>Problems based on Special types of Graphs:</u>
- 2. Draw the complete graph k5 with vertices A, B, C, D, E. Draw all complete sub graph of k5 with 4 vertices.
- 3. Determine which of the following graphs are bipartite and which are not. If a graph is bipartite, state if it is completely bipartite.

Problems based on Graph isomorphism:

4. Determine whether the graphs G and H given below are isomorphic.

5. Examine whether the following pair of graphs are isomorphic. If not isomorphic, give the reasons.

6. Check whether the graphs G and H given below are isomorphic are not.

7. Show that the two graphs shown below are isomorphic?

8. Using circuits, examine whether the following pairs of graphs G₁, G₂ given below are isomorphic or not.

9. Using circuits, examine whether the following pairs of graphs G₁, G₂ given below are isomorphic or not.

10. Draw the graph with the following adjacency matrix $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$

11. Draw the graph represented by given Adjacency matrix

(i)	[1	2	0	1]		F0	1	0	1]
	2	0	3	0	(ii)	1	0	1	0
	0	3	1	1	(11)	0	1	0	1ļ
	1	0	1	0		1	0	1	0

12. Examine whether the following two graphs G and G' associated with the following adjacency matrices are isomorphic.

01	1	0	0	õ	11		0	1	0	0	0	11	
1	0	1	0	1	0		1	0	1	0	0	1	
0	1	0	1	0	1	1224	0	1	0	1	1	0	
0	0	1	0	1	0	and	0	0	1	0	1	0	
0	1	0	1	0	1		0	0	1	1	0	1	N.
L_1	0	1	0	1	0		1	1	0	0	1	0	-

13.

Problems based on Connectivity:

- 14. Prove that the maximum number of edges in simple disconnected graph G with n vertices and k components is $\frac{(n-k)(n-k+1)}{2}$.
- 15. Find all the connected sub graph obtained from the graph given in the following figure, by deleting each vertex, List out the simple paths from A to in each graph.

Problems based on Euler and Hamilton paths.

16. Find an Euler path (or) an Euler circuit, if it exists in each of the three graphs below. If it does not exist, explain В

Α

B Α

B

- 17. Prove that a connected graph G is Eulerian if and only if all the vertices are of even degree.
- 18. Prove that a connected graph contains Euler path, if and only if it has exactly two vertices of odd degree.
- 19. Give an example of a graph which is

1)Eulerian but not Hamiltonian 2) Hamiltonian but not Eulerian

3) Hamiltonian and Eulerian 4)Neither Hamiltonian or Eulerian

20. Draw a graph that is both Eulerian and Hamiltonian.