SNS COLLEGE OF ENGINEERING

Kurumbapalayam(Po), Coimbatore - 641 107

Accredited by NAAC-UGC with ‘A’ Grade
Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

LT rITUTIONS

Department of Information Technology

19CS204 OBJECT ORIENTED PROGRAMMING

[YEAR /Il SEMESTER

Topic - Exception Handling - Nested try, throw, throws,

finally

Exception Handling/ R KAMALAKKANNAN/CSE-IOT/SNSCE

Exception Handling - Nested Try

Nested try Statements

* The try statement can be nested. That Is, a try statement can be inside the block of another try.
« Each time a try statement Is entered, the context of that exception is pushed on the stack.

« |f an inner try statement does not have a catch handler for a particular exception, the stack is unwound
and the next try statement’s catch handlers are inspected for a match.

« This continues until one of the catch statements succeeds, or until all of the nested try statements are
exhausted.

 If no catch statement matches, then the Java run-time system will handle the exception.

Exception Handling/ R KAMALAKKANNAN/CSE-IOT/SNSCE -

Exception Handling — Nested Try

public class NestTry {

public static void main(String args(]) { catch(ArraylndexOutOfBoundsException e) {

try { System.out.printin("Array index out-of-bounds: " + e);
Int a = args.length; 1

/* 1f no command-line args are present, 1 catch(ArithmeticException) {

the following statement will generate System.out.printin("Divide by 0: " + €);

a divide-by-zero exception. */ 1

Intb =42/ a; 1

System.out.printin("a =" + a); 1

try { // nested try block

/* If one command-line arg Is used,

then a divide-by-zero exception

will be generated by the following code. */
If(a==1) a = a/(a-a); // division by zero

[* If two command-line args are used,

then generate an out-of-bounds exception. */
If(a==2) {

intc[]={1};

c[42] = 99; // generate an out-of-bounds exception
}3: Exception Handling/ R.KAMALAKKANNAN /CSE-10T/SNSCE -

Exception Handling - throw

« So far, you have only been catching exceptions that are thrown by the Java run-time system.

00 0:;
&’.
2]

* However, it is possible for your program to throw an exception explicitly, using the throw statement.

* The general form of throw is shown here:
 throw Throwablelnstance;

« Here, Throwablelnstance must be an object of type Throwable or a subclass of Throwable.

* Primitive types, such as int or char, as well as non-Throwable classes, such as String and Object,
cannot be used as exceptions.

« There are two ways you can obtain a Throwable object:

 using a parameter in a catch clause or
 creating one with the new operator.

Exception Handling/ R KAMALAKKANNAN/CSE-IOT/SNSCE -

Exception Handling - throw

Example — throw

public class Vote{

static void validate(int age){
If(age<18)
throw new ArithmeticException(*You are Not Eligible for Vote");
else
System.out.printin(*"Welcome to vote");

h

public static void main(String args[]){
validate(17);
System.out.printin(*Thank you for voting");

}
}

Exception Handling/ R KAMALAKKANNAN/CSE-IOT/SNSCE -

R

>

Exception Handling - throws

Turion’s

00
« |f a method is capable of causing an exception that it does not handle, it must specify this behavior sothat@ @ @

callers of the method can guard themselves against that exception. You do this by including a throws @ @ @
clause in the method’s declaration.

« Throws Is necessary for all exceptions, except those of type Error or RuntimeException, or any of their
subclasses.

« Usually, we don't need to handle unchecked exceptions. It's because unchecked exceptions occur due to
programming errors. And, it is a good practice to correct them instead of handling them.

« All other exceptions that a method can throw must be declared in the throws clause. Checked exceptions.

 If they are not, a compile-time error will result. General form of a method declaration that includes a

throws clause:
type method-name(parameter-list) throws exception-list

{
// body of method

}

Here, exception-list iIs a comma-separated list of the exceptions that a method can throw.
Exception Handling/ R KAMALAKKANNAN/CSE-IOT/SNSCE -

Exception Handling - throws

Example
class ThrowsDemo { class ThrowsDemo {
static void throwOne() { static void throwOne() throws lllegal AccessException {
System.out.printin("Inside throwOne."); System.out.printin(*Inside throwOne.");
throw new IllegalAccessException(“demo"); throw new Illegal AccessException(*'demo");
} }
public static void main(String args[]) { public static void main(String args[]) {
throwOne(); try {
} throwOne();
} } catch (Illegal AccessException e) {
System.out.printin("Caught "' + e);
}
}
}

Exception Handling/ R KAMALAKKANNAN/CSE-IOT/SNSCE -

l

~»

L

Exception Handling - finally

Turiont

00 0"

« Afinally block contains all the crucial statements that must be executed whether exception occurs or not.

« The statements present Iin this block will always execute regardless of whether exception occurs In try
block.

 Java finally block follows try or catch block

Syntax of Finally block

try {
//Statements that may cause an exception

¥
catch {

//Handling exception

}
finally {

//Statements to be executed

¥
Exception Handling/ R KAMALAKKANNAN/CSE-IOT/SNSCE -

Exception Handling - finally

Example

public class finallyexample{
public static void main(String args[]){
try{
Int data=25/0;
System.out.printin(data);
h
catch(NullPointerException e){System.out.printin(e):}
finally{System.out.printin("finally block is always executed");}
System.out.printin(*'rest of the code...");

}

Exception Handling/ R KAMALAKKANNAN/CSE-IOT/SNSCE -

Exception Handling - finally

Example

class JavaFinally

{

public static void main(String argsl])

{
System.out.printin(JavaFinally.myMethod());

}
public static int myMethod()
1
try {
return 152;
}
finally {
System.out.printin(*This is Finally block");
System.out.printin("Finally block ran even after return statement");

}
} Exception Handling/ R.KAMALAKKANNAN /CSE-1OT/SNSCE -

Exception Handling - finally L

Java — Built-in Exceptions
Built in Exception of two types. Unchecked and checked exceptions. RuntimeException are called checke
exceptions. Exceptions under RuntimeException subclass includes,

Exception Meaning

ArithmeticException Arithmetic error, such as divide-by-zero.

ArrayIndexOutOfBoundsException Array index 1s out-of-bounds.

ArrayStoreException Assignment to an array element of an incompatible
type.

ClassCastException Invalid cast.

EnumConstantNotPresentExcepton An attempt is made to use an undefined
enumeration value.

[llegalArgumentException Illegal argument used to invoke a method.

[llegalMonitorStateException Illegal monitor operation, such as waiting on an
unlocked thread.

IllegalStateException Environment or application is in incorrect state.

IllegalThreadStateException Requested operation not compatible with current
thread state.

IndexOutOfBoundsException Some type of index is out-of-bounds.

NegativeArraySizeException Array created with a negative size.

NullPointerException Invalid use of a null reference.

NumberFormatException Invalid conversion of a string to a numeric format.

SecurityException Attempt to violate security.

StringIndexOutOfBounds Attempt to index outside the bounds of a string.

TypeNotPresentException Type not found.

UnsupportedOperationException An unsupported operation was encountered.

Exception Handling/ R KAMALAKKANNAN/CSE-IOT/SNSCE

Exception Handling - finally

Java — Built-in Exceptions
Checked exceptions Includes exception that must be included in a method’s throws list if that method ca

generate one of these exceptions and does not handle it itself.

Exception Meaning

ClassNotFoundExcepuon Class not found.

CloneNotSupportedException Attempt to clone an object that does not implement the
Cloneable interface.

lllegalAccessExcepuon Access to a class 1s demied.

InstantatnonException Attempt to create an object of an absiract class or interface.

Interrupted Exception One thread has been interrupted by another thread.

NoSuchFieldExcepuon A requested field does not exist

NoSuchMethodExcepuon A requested method does not exist.

ReflecuveOperatnonExcepuon Superclass of reflecnon-related excepuons.

Exception Handling/ R KAMALAKKANNAN/CSE-IOT/SNSCE -

Exception Handling - Creating Own Exceptions

User Defined or Custom Exceptions

In java we can create our own exception class and throw that exception using throw keyword. These
exceptions are known as user-defined or custom exceptions.

Java custom exceptions are used to customize the exception according to user need.

By the help of custom exception, you can have your own exception and message.

Custom exceptions which are basically derived classes of Exception

Exception Handling/ R KAMALAKKANNAN/CSE-IOT/SNSCE -

https://docs.oracle.com/javase/7/docs/api/java/lang/Exception.html

Exception Handling - Creating Own Exceptions

Example

class InvalidAgeException extends Exception{
InvalidAgeException(String s){
super(s);

b}

public class TestCustomException1{
static void validate(int age)throws InvalidAgeException{
1f(age<18) : |
throw new InvalidAgeException("not valid");
else
System.out.printin("welcome to vote");

¥
public static void main(String args[]){

try{

validate(13);

}catch(Exception m){System.out.printin("Exception occured: '+m);}
System.out.printin("rest of the code..."); }

}

Exception Handling/ R KAMALAKKANNAN/CSE-IOT/SNSCE

https://docs.oracle.com/javase/7/docs/api/java/lang/Exception.html

THANK YOU

Exception Handling/ R KAMALAKKANNAN/CSE-IOT/SNSCE

