

SNS COLLEGE OF ENGINEERING Coimbatore – 641 107

TOPIC:6- Homomorphism

Homemorphism

Let (G, *) and (H, Δ) be any two groups.

mapping $f: G \rightarrow H$ is said to be a

mapping $f: G \rightarrow H$ is said to be a

mapping $f: G \rightarrow H$ is said to be a

f(a * b) = $f(a) \Delta F(b)$ for any $a, b \in G$.

Prove that the group homomorphism preserves identity element.

Let a e G .

Let f be a homomorphism from (G, *) into

G', *)

clearly f(a) & G'

SNS COLLEGE OF ENGINEERING Coimbatore - 641 107

$$\Rightarrow f(a) * e' = f(a) \qquad \left[e' - identity \text{ in } G' \right]$$

$$= f(a * e) \qquad \left[e - identity \text{ in } G' \right]$$

$$= f(a) * f(e) \qquad \left[f - homomorphism \right]$$

$$f(a) * e' = f(e) \qquad \left[Left \text{ cancellation } law \right]$$

.. f preserves identity element.

Kernel of a Homomorphism

Let $f: G \to G'$ be a group homomorphism The set of elements of G which are mapped into e' (identity in G') is called the Kernel of f and it is denoted by Ker (f)

 $Ker(f) = \begin{cases} x \in G_1 \mid f(x) = e' \end{cases}$

Isomorphism

A mapping of from a group (G, x) to a group (G', A) is said to be an isomorphism if (i) f is a homomorphism f(a*b) = f(a) A f(b) Y a, b & G.

SNS COLLEGE OF ENGINEERING Coimbatore - 641 107

(i)

f is a homomorphism
$$f(a * b) = f(a) \Delta f(b) \quad \forall a, b \in G.$$