SNS COLLEGE OF ENGINEERING

AN AUTONOMOUS INSTITUTION Academic Year 2023 – 2024(Even semester) 19MA302 – TRANSFORMS & PARTIAL DIFFERENTIAL EQUATION

UNIT- II-FOURIER TRANSFORM PART-A

1. Prove that
$$
F_C[f(ax)] = \frac{1}{a} F_C(\frac{s}{a})
$$
, where $F(s) = F[f(x)]$

[A.U./APR/MAY/2011] Answer:

$$
F_c[f(x)] = \sqrt{\frac{2}{\pi}} \int_0^{\infty} f(x) \cos sx dx
$$

Let $u = a x$ then $x = u/a$ and hence $dx = \frac{du}{a}$ *du and if* $x = \infty$ *then* $u = \infty$ *If* $x = -\infty$ then $u = -\infty$ $\int\!\!\!\!\!\!\int$ $=$ 0 $[f(ax)] = \sqrt{\frac{2}{\pi}} \int_a^{\infty} f(u) \cos(\frac{s}{a}u) \frac{du}{a}$ $u)$ ^{*du*} *a* $F_c[f(ax)] = \sqrt{\frac{2}{\pi}} \int_a^b f(u) \cos(\frac{s}{a})$ $=$ $\frac{1}{-F_c}(\frac{s}{-})$ $\mathcal{C} \setminus a$ *s a*

2. Find Fourier Cosine Transform of e^{-ax} , $x > 0$ **[A.U./APR/MAY/2010] Answer:**

We know that,

$$
F_c[f(x)] = \sqrt{\frac{2}{\pi}} \int_0^{\infty} f(x) \cos sx dx
$$

$$
F_c[e^{-ax}] = \sqrt{\frac{2}{\pi}} \int_0^{\infty} e^{-ax} \cos sx dx
$$

$$
= \sqrt{\frac{2}{\pi}} \left[\frac{a}{s^2 + a^2} \right]
$$

3. Find Fourier Sine Transform of e^{-ax} , $x > 0$ **[A.U./APR/MAY/2010] Answer:**

We know that,

$$
F_c[f(x)] = \sqrt{\frac{2}{\pi}} \int_0^{\infty} f(x) \sin s \, x dx
$$

$$
F_c[e^{-ax}] = \Rightarrow \Rightarrow \Rightarrow \frac{2}{\pi} \int_0^{\infty} e^{-ax} \sin s \, x dx
$$

$$
= \sqrt{\frac{2}{\pi}} \left[\frac{s}{s^2 + a^2} \right]
$$

4. Define self reciprocal with respect to Fourier transform. [A.U./NOV/DEC/2011]

Answer:

If the Fourier transform of $f(x)$ is $f(s)$ then $f(x)$ is said to be self reciprocal function.

5. State Convolution theorem in Fourier transform. [A.U./NOV/DEC/2012]

Answer:

$$
F[f(x)*g(x)] = F[f(x)]F[g(x)]
$$

6. Prove that $F[e^{iax} f(x)] = F(s+a)$ where $F(s) = F[f(x)]$ **[A.U./NOV/DEC/2013] Answer:**

$$
F[e^{iax} f(x)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{iax} f(x) e^{isx} dx
$$

$$
= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{i(s+a)x} dx
$$

$$
= \mathbf{F}(s+a)
$$

7. Find Fourier Sine Transform of $\frac{1}{x}$

1

[A.U./MAY/JUNE/2014] Answer:

$$
F_s \left[\frac{1}{x} \right] = \sqrt{\frac{2}{\pi}} \int_0^\infty \frac{1}{x} \sin sx \, dx
$$

$$
= \sqrt{\frac{2}{\pi}} \int_0^\infty \frac{\sin sx}{x} \, dx
$$

We know that,

$$
\int_{0}^{\infty} \frac{\sin t}{t} dt = \frac{\pi}{2}
$$

Let $sx = t \implies x = t / s$ and $dx = dt / s$

$$
F_{s} \left[\frac{1}{x} \right] = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \frac{\sin t}{t / s} dt
$$

$$
= \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \frac{s \sin t}{t} dt
$$

$$
= \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \frac{\sin t}{t} dt
$$

$$
= \sqrt{\frac{2}{\pi}} \frac{\pi}{2} = \sqrt{\frac{\pi}{2}}
$$

UNIT – III

PARTIAL DIFFERENTIAL EQUATIONS

PART-A

1. Form the PDE by eliminating the arbitrary constants a and b from the relation $z = ax^3+by^3$ **[A.U. MAY/JUN 2014]**

 Answer :

Given $z = ax^3 + by^3$... (1) Partially differentiate with respect to x and y, we get

$$
p = \frac{\partial z}{\partial x} = 3ax^2 \text{ and } q = \frac{\partial z}{\partial y} = 3by^2
$$

$$
\frac{p}{3} = ax^2 \implies \frac{px}{3} = ax^3 \qquad \dots (2)
$$

$$
\frac{q}{3} = by^2 \implies \frac{qy}{3} = by^3 \qquad \dots (3)
$$

Substitute (2) & (3) in (1), we get the required PDE is $3z = px + qy$.

2. Form the PDE by eliminating the arbitrary constants a and b from the relatio ax^2+by^2 **[A.U. NOV/DEC 2013]**

 Answer : Given $z = ax^2 + by^2$... (1) Partially differentiate with respect to x and y, we get

$$
p = \frac{\partial z}{\partial x} = 2ax
$$
 and $q = \frac{\partial z}{\partial y} = 2by$

p $\frac{p}{2} = ax \Rightarrow \frac{px}{2}$ $\frac{dx}{2} = ax^2$ $\dots (2)$ \overline{q} $\frac{q}{2} = by^2 \Rightarrow \frac{qy}{2}$ $\frac{dy}{2} = by^2$... (3)

Substitute (2) & (3) in (1), we get the required PDE is $2z = px + qy$.

3. Form the PDE from $(x-a)^2 + (y-b)^2 + z^2 = r^2$ **[A.U. MAY/JUN 2013] Answer:** Given $(x - a)^2 + (y - b)^2 + z^2 = r^2$...(1) Partially differentiate with respect to x in (1), we get $2(x-a) + 2z \frac{\partial z}{\partial x} = 0$, $(x-a) + zp = 0$...(2) Partially differentiate with respect to y, we get $2(y - b) + 2z \frac{\partial z}{\partial y} = 0$, $(y - b) + zq = 0$...(3) $(2) \Rightarrow x - a = - zp$ and $(3) \Rightarrow y - b = -zq$ From (1), $(-zp)^2 + (-zq)^2 + z^2 = 1$ \Rightarrow $z^2[p^2 + q^2 + 1] = 1$, which is the required PDE.

4. Find the complete integral of $p+q = pq$ [A.U. MAY/JUN 2013] **Answer:**

 $p + q = pq$...(1)

Let $ax+by+c = 0$...(2) be a solution. Replace p by a & q by b in (1) , $a + b = ab$ \Rightarrow a = ab - b $= b (a - 1)$ \Rightarrow b = $\frac{a}{a-1}$ *a* From (2), $ax + \left(\frac{a}{a-1}\right)$ $\left(\frac{a}{a-1}\right)$ ſ $a-1$ $\left(\frac{a}{x}\right)y + c = 0$, which is the complete solution.

5. Eliminate the arbitrary function f from $z = f(y/x)$ and form the PDE.

 Answer: [A.U.NOV/DEC 2012]

Given $z = f\left(\frac{y}{x}\right)$ \mathcal{X} $\dots (1)$ Partially differentiate with respect to x in (1), we get $p = \frac{\partial z}{\partial x} = f'(\frac{x}{y})$ $\left(\frac{x}{y}\right)\left(\frac{-y}{x^2}\right)$ $\frac{-y}{x^2}$ Partially differentiate with respect to y in (1), we get $q = \frac{\partial z}{\partial y} = f'(\frac{x}{y})$ $\left(\frac{x}{y}\right)\left(\frac{1}{x}\right)$ $\frac{1}{x}$ $\Rightarrow \frac{p}{q}$ $\frac{p}{q} = \frac{-y\dot{x}}{x^2}$ $\frac{y}{x^2}$ \Rightarrow px + qy = 0, which is the required PDE.

6. Form PDE by eliminating the arbitrary function from z^2 -xy = $f(x/z)$

Answer: [A.U. MAY/JUN 2012]

Given $z^2 - xy = f(z)$ Z $\dots (1)$ Partially differentiate with respect to x, we get

$$
2z\frac{\partial z}{\partial x} - y = f'\left(\frac{x}{z}\right)\left[\left(\frac{z - x\frac{\partial z}{\partial x}}{z^2}\right)\right]
$$

\n
$$
\Rightarrow 2zp - y = f'\left(\frac{x}{z}\right)\left[\left(\frac{z - xp}{z^2}\right)\right] \qquad ...(2)
$$

Partially differentiate with respect to y, we get

$$
2z\frac{\partial z}{\partial y} - x = f'\left(\frac{x}{z}\right) \left[\left(\frac{0 - x\frac{\partial z}{\partial y}}{z^2} \right) \right]
$$

\n
$$
\Rightarrow 2zq - x = f'\left(\frac{x}{z}\right) \left[\left(\frac{-xq}{z^2} \right) \right] \qquad ...(3)
$$

\n
$$
\frac{(2)}{(3)} \Rightarrow \frac{2zp - y}{2zq - x} = \frac{z - xp}{-xq} \Rightarrow x^2p + 2z^2q - xz - xyq = 0, \text{ which is the required PDE.}
$$

7. Form PDE by eliminating the arbitrary constants a and b from $z = (x^2 + a^2)(y^2 + b^2)$ **Answer: [A.U. APR/MAY 2010]**

Given $z = (x^2 + a^2)(y^2 + b^2)$ $\dots (1)$

Partially differentiate with respect to x in (1), we get

$$
p = \frac{\partial z}{\partial x} = 2x (y^2 + b^2)
$$

i.e., $(y^2 + b^2) = \frac{p}{2x}$
Partially differentiate with respect to y in (1), we get

 $zq - x = xq$

$$
q = \frac{\partial z}{\partial y} = 2y(x^2 + a^2)
$$

i.e.,
$$
(x^2 + a^2) = \frac{q}{2y}
$$

\n $\therefore (1) \Rightarrow z = \left(\frac{q}{2y}\right) \left(\frac{p}{2x}\right)$
\n $\Rightarrow 4xyz = pq$, which is the required PDE.

8. Form PDE by eliminating the arbitrary constants a and b from $z = (x^2+a)(y^2+b)$ **Answer:** [A.U. APR/MAY 2011]

Given $z = (x^2 + a)(y^2 + b)$... (1) Partially differentiate with respect to x in (1), we get $p = \frac{\partial z}{\partial x} = 2x (y^2 + b)$

i.e.,
$$
(y^2 + b)
$$
 = $\frac{p}{2x}$

Partially differentiate with respect to y in (1), we get $q = \frac{\partial z}{\partial x}$ $\frac{\partial z}{\partial y} = 2y(x^2 + a)$ \overline{q}

i.e.,
$$
(x^2 + a) = \frac{q}{2y}
$$

\n $\therefore (1) \Rightarrow z = \left(\frac{q}{2y}\right) \left(\frac{p}{2x}\right)$
\n $\Rightarrow 4xyz = pq$, which is the required PDE.

9. Find the partial differential equation of all planes cutting equal intercepts from the x and y axis . [A.U. NOV/DEC

2009]

Answer:

Equations of all planes cutting equal intercepts from the x and y axis are $\frac{x}{z} + \frac{y}{z} + \frac{z}{z} = 1$ *b z a y a x*

Partially differentiate with respect to $x \& y$, we get

$$
\frac{1}{a} + \frac{p}{b} = 0 \quad ...(1) \quad and \quad \frac{1}{a} + \frac{q}{b} = 0 \quad ...(2)
$$

From (1) and (2),
$$
\frac{p}{b} = \frac{q}{b} \quad \Rightarrow \quad p = q
$$

10. Find the complete integral of $z = px + qy + \sqrt{pq}$

Answer:

$$
Given z = px + qy + \sqrt{pq}
$$

This is in Clairaut's form (type 2)

Replace p by a and q by b, we get complete integral.

Hence $z = ax + by + \sqrt{ab}$

11. Find the complete integral of $\tilde{} = \tilde{-} + \tilde{-} + \sqrt{pq}$ *p y q x pq* $\frac{z}{-} = \frac{x}{+} + \frac{y}{-} +$

Given
$$
\frac{z}{pq} = \frac{x}{q} + \frac{y}{p} + \sqrt{pq}
$$

Multiply by pq we get

$$
z = px + qy + pq\sqrt{pq}
$$

This is in Clairaut's form (type 2)

Replace p by a and q by b, we get complete integral.

Hence $z = ax + by + ab\sqrt{ab}$

12. Find the complete integral of $p - q = 0$ **[A.U.NOV/DEC 2008]**

Answer: Given $p - q = 0$...(1) Let $z = ax + by + c$...(2) be a solution

Replace p by a and q by b, we get

 $a - b = 0 \Rightarrow b = a$ Hence, the complete integral is $z = a x + a y + c$

13. Find the solution of $\sqrt{p} + \sqrt{q} = 1$

^p ^q ¹ **[A.U. NOV/DEC 2008]**

Answer:

Given $\sqrt{p} + \sqrt{q} = 1$...(1)
...(2) be a solution. Let $z = a x + b y + c$ Replace p by a $\&$ q by b in (1), we get $\sqrt{a} + \sqrt{b} = 1$ $\Rightarrow \sqrt{b} = 1 - \sqrt{a}$ \Rightarrow $b = (1 - \sqrt{a})^2$

Substitute b in (2), $z = ax + (1 - \sqrt{a})^2 y + c$ is the complete integral.

14. Form the partial differential equation by eliminating the arbitrary function from \emptyset $\left[z^2 - xy, \frac{x}{2} \right]$ Z] = **[A.U. MAY/JUN 2006] Answer:** Let $u = z^2 - xy$ and $v = \frac{x}{z}$

z

We know that,

$$
\begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial v}{\partial x} \\ \frac{\partial u}{\partial y} & \frac{\partial v}{\partial y} \end{vmatrix} = 0
$$

\n
$$
\Rightarrow \begin{vmatrix} 2zp - y & \frac{z - px}{z^2} \\ 2zq - x & \frac{-xq}{z^2} \end{vmatrix} = 0
$$

\n
$$
\Rightarrow px^2 - q (xy - 2z^2) = xz
$$

15. Solve $(D - D')^3$ **Answer:** The auxiliary equation is $(m - 1)^3 = 0$

i.e., $m = 1, 1, 1$ Therefore, the general solution is $z = f_1(y + x) + x f_2(y + x) + x^2 f_3(y + x)$

16. Solve (D⁴ -D'⁴ Answer:

The auxiliary equation is $m^4 - 1 = 0$ Solving, (m^2-1) $(m^2+1) = 0$ $m^2 - 1 = 0$ and $m^2 + 1 = 0$ i.e., $m = 1, -1, i, -i.$ Therefore, the general solution is $z = f_1(y + x) + f_2(y - x) + f_3(y - ix) + f_4(y + ix)$

17. Solve $(D-1)(D-D'+1)z = 0$ **[A.U. NOV/DEC 2012] Answer:**

z = 0 [A.U. NOV/DEC 2011]

[A.U. MAY/JUN 2014]

 The auxiliary equation is $(m-1)(m-1+1) = 0$ Solving, $(m-1)m = 0$ i.e., $m = 1, 0$ Therefore, the general solution is $z = f_1(y + x) + f_2(y)$ **18. Solve** $(D^2 \text{-} 2DD' + D^{\text{-} 2})z = e^{x-y}$ **[A.U. NOV/DEC 2010] Answer:** The auxiliary equation is $m^2 - 2m + 1 = 0$ Solving, $(m-1)(m-1) = 0$ i.e., $m = 1, 1$ The complementary function is $z = f_1(y + x) + x f_2(y + x)$ $P.I. = \frac{1}{R^2 \cdot 2R}$ $\frac{1}{D^2-2DD'+D'^2}e^{x-y}$ $= \frac{e^{x-y}}{1-e^{x}}$ $\frac{e^{x-y}}{1-2(1)(-1)+1} = \frac{e^{x-y}}{4}$ 4 Hence, the general solution is $z = f_1(y + x) + x f_2(y + x) + \frac{e^{x-y}}{x}$ 4 **19.** Solve $\frac{\partial^2 Z}{\partial x^2} - \frac{\partial^2 Z}{\partial x \partial Y}$ $\frac{\partial^2 Z}{\partial x \partial Y} + \frac{\partial Z}{\partial x}$ ∂x = **[A.U. Nov/Dec 2013] Answer :** Given equation can be written as $(D^2 - DD' + D)z = 0$ The auxiliary equation is m^2 $m^2 - m + m = 0$ $m^2 = 0$ i.e., $m = 0, 0$ Therefore the general solution is $z = f_1(y) + x f_2(y)$ **20. Solve (D² - 7DD' + 6D'²)z = 0 [A.U. MAY/JUN 2012] Answer:** The auxiliary equation is $m^2 - 7m + 6 = 0$ Solving, $(m-1)$ $(m-6) = 0$ i.e., $m = 1, 6$ The general solution is $z = f_1(y + x) + x f_2(y + 6x)$ **21. Solve (D 3 - 2 D ² D') z = 0 [A.U. NOV/DEC 2009] Answer:** Given $(D^3 - 2 D^2 D')$ z = 0 The auxiliary equation is $m^3 - 2m^2 = 0$, Solving, $(m-2)m^2 = 0$ i.e., $m = 2, 0, 0.$ The general solution is $z = f_1(y + 2x) + f_2(y) + x f_3(y)$.

PART B (Unit II)

- 1. Find the Fourier cosine and sine transform of $f(x)=e^{-ax}$
- 2. Evaluate $(x^2 + a^2)^2$ $\int\limits_0^\infty$ $\int_{0}^{1} (x^2 + a^2)^2$ $\frac{dx}{dx}$ using Parseval's identity
- 3. Using Fourier transform, evaluate $\int_0^\infty \frac{x^2 dx}{(x^2 + a^2)^2}$ $(x^2+a^2)^2$ *∞* 0
- 4. Evaluate $\int_{0}^{\infty} \frac{dx}{(x^2 + a^2)(x^2 + b^2)}$ $\int_0^1 (x^2 + a^2)(x^2 + b^2)$ $\frac{dx}{\sqrt{2-1}}$ using Fourier transform.
- 5. Evaluate $\int_{0}^{\infty} \frac{dx}{(x^2+1)(x^2+4)}$ $\int_0^1 (x^2+1)(x^2+4)$ $\frac{dx}{y}$ using transform methods.
- 6. Find the Fourier sine and cosine transform of a function $f(x) = e^{-x}$. Using Parseval's identity, evaluate dx $(x^2+1)^2$ *∞* $\int_0^\infty \frac{dx}{(x^2+1)^2}$ and $\int_0^\infty \frac{x^2 dx}{(x^2+1)^2}$ $(x^2+1)^2$ *∞* 0
- 7. Find the infinite Fourier transform of $e^{-a^2x^2}$. Hence deduce the infinite Fourier transform of $e^{-\sqrt{2}}$ 2 *x ^e* .
- 8. Find the Fourier Sine Transform $f(x) = \{$ $x, \, 0 < x < 1$ $2 - x, 1 < x < 2$ 0, $x > 2$

PART B(Unit III)

- 1. Form the pde by eliminating the arbitrary function from $z = x f \left(\frac{y}{x} \right) + y \varphi(x)$ $\frac{y}{-}$ + $y\varphi$ J $\left(\frac{y}{x}\right)$ l ſ
- 2. Form the PDE by eliminating arbitrary function f and g from $z=x^2f(y)+y^2g(x)$
- 3. Find the singular integral of $z = px + qy + \sqrt{1 + p^2 + q^2}$
- 4. Solve $z = px+qy+pq$
- 5. Solve : $z = px + qy + p^2 q^2$
- **6.** Solve $x(y z)p + y(z x)q = z(x y)$
- **7.** Solve $x(y^2 z^2)p + y(z^2 x^2)q = z(x^2 y^2)$
- **8.** Solve the partial differential equation (mz–ny) $p+(nx-2)$ q=ly-mx
- **9.** Solve $x(y^2+z)p+y(x^2+z)q = z(x^2-y^2)$
- **10.** Solve the partial differential equation (3z–4y) p+(4x–2z) q=2y-3x
- **11.** Solve $(D^3 7DD^{1^2} 6D^{1^3})z = cos(x + 2y) + x + e^{x + 2y}$ **12.** Solve $(D^3 – 7DD^1{}^2 – 6D^1{}^3)z = e^{2x+y} + \sin(x+2y)$ 13. Solve $(D^3 + D^2D^1 - DD^{1^2} - D^{1^3})z = e^x \cos 2y$ 14. Solve $(D^2 – 2DD^1)z = e^{2x-y} + x^3y$
- 15. Solve $(D^2 + 2DD' + D'^2)z = x^2y + e^{x-y}$
- 16. Solve $(D^2+DD'-6D^2)$ z=ycosx
- 17. Solve $(D^2 5DD' + 6D'^2)z =$ ysinx