

SNS COLLEGE OF ENGINEERING

Coimbatore-641 107 (An Autonomous Institution)

Accredited by NBA & NAAC with 'A' Grade Approved by AICTE, New Delhi & Recognized by UGC Affiliated to Anna University, Chennai

DEPARTMENT OF PHYSICS COURSE NAME : 23PYT101 – ENGINEERING PHYSICS

I YEAR / I SEMESTER

UNIT 2 – LASER AND FIBER OPTICS

TOPIC 2 – EINSTEIN'S A AND B COEFFICIENTS-DERIVATION

Introduction of Einstein coefficients

The **Einstein** A **coefficients** are related to the rate of spontaneous emission of light, and the **Einstein B coefficients** are related to the absorption and stimulated emission of light.

Excited state

Ground state

state

Rate of spontaneous emission is given by,

Stimulated emission

Rate of stimulated emission is given by, $R_{ST} \alpha \rho N_2$ $R_{ST} = B_{21} \rho N_2$

Einstein A & B Coefficients (or) Einstein's Quantum theory of **Laser Radiation:**

Under thermal equilibrium, the mean population N_1 and N_2 in the lower and upper energy levels respectively remains constant. This condition requires that the number of transition from E_2 to E_1 must be equal to number of transition from E_1 to E_2 Thus, The rate of absorption = The rate of emission $R_{AB} = R_{SP} + R_{ST}$ $B_{12} \rho N_1 = A_{21} N_2 + B_{21} \rho N_2$ $\rho[B_{12} N_1 - B_{21} N_2] = A_{21} N_2$

$$\rho = \frac{A_{21}N_2}{B_{12}N_1 - B_{21}N_2}$$
$$\rho = \frac{A_{21}}{B_{21}} \cdot \frac{1}{\left(\frac{B_{12}N_1}{B_{21}N_2} - 1\right)}$$

From Boltzmann distribution law, the relative population Where,

Photon Energy (E)=
$$h\nu = E_2 - E_1 - \dots - \dots$$

$$\frac{N_1}{N_2} = e^{(h\gamma)/\kappa T} - \dots - \dots - \dots$$

·→ (1)

(2) --→ (3)

Where

 $K \rightarrow Boltzmann constant$ $T \rightarrow absolute temperature$

$$\therefore \rho = \frac{A_{21}}{B_{21}} \cdot \frac{1}{\left(\frac{B_{12}}{B_{21}}e^{h_{\gamma}/KT} - 1\right)} - -\frac{1}{B_{21}}$$

According to Planck's theory of radiation, the energy distribution is given by

 B_{21}

Where

$$B_{12} = B_{21} = B - - - - - - \rightarrow (6)$$

$$\frac{A_{21}}{B_{21}} = \frac{8\pi h\gamma^3}{C^3} - - - - \rightarrow (7)$$

$$A = B\left(\frac{8\pi h\gamma^3}{C^3}\right) - - - \rightarrow (8)$$

Equation (6) and (7) known as Einstein relations and (8) gives the relation between the A and B Einstein's coefficients.

References

<u>https://images.app.goo.gl/B6e7AajvyRANdJEX9</u>

EINSTEIN'S A AND B COEFFICIENTS-DERIVATION / 23PYT101 - LASER AND FIBER OPTICS /B.VIJAYAKUMAR/PHYSICS/SNSCE

