S6ME MBITS- DYNAMICS OF MACHINERY MODULE-VI

MODULE 6- CRITICAL SPEED OF SHAFTS, TORSIONAL VIBRATIONS, MDOFS

When the rotor is mounted at midspan, the shaft at midspan deflects by a small amount A such
that kA = mg; even then the shaft is assumed to be perfectly straight. When the shaft rotates, the
eccentricity of the rotor e causes to bend the shaft by distance s at midspan . s is called dynamic
deflection and keeps on changing until the equilibrium is reached given by:

m(s+e) o> = ks The value of s in this equation will be maximum and is called amplitude of
dynamic deflection

(k-m ©?)s = me o dividing by m and arranging as s/e form we get

2 2
2 == ﬁ defining r= wﬂ when r approaches 1 (o equals o, ), the shaft tends to blow at
——w - n
m
violently and the corresponding rpm is called critical speed(or whirling speed or whipping speed)
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(a) When shaft is stationary. () When shatt is rotating.
Fig. Critical or whirling speed of a shaft.
PROBLEM 1: A\ shaft 12,5 mm diameter rotates in long bearings and a disc weighing

196 N 1s attached to the midspan of the shaft. The span of the shalt between the bearings is
600 mm. The mass centre of the disc is 0.5 mm from the axis of the shafil. Neglecting the mass
of the shaft and taking the deflection as for a beam fixed at both ends. determine the critical
speed of the shaft. Also determine the range of the speed over which the stress in the shalt due
to bending will not exceed 11.77 k-N/ecm”. Take £ = 1.96 x 107 N/ecm®

Solution
Assuming the shaft to be in horizontal position, the static deflection with the fixed end
condition under the gravitational pull on the disc is:
rp 3 ¢ '
wi 196(0.6) x64 - :
—= == - =0387x10 " m

192 EY 192¢(1.96 X 10" ") #(0.0125)

The natural frequency of transverse vibration is, therefore

—

|8 | 9.81
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VA Yo387x10™
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Note 1: Shaft on Long bearings are equivalent to fixed end beams. To calculate the static

. _wB
deflection A_192 1

is used. For short bearings it is equivalent to simply

wi3

supported beams and static deflection in this case will be A:48 T

Therefore, the critical speed is given by

_60x@ 60x102.33
S oar 2r

N

q

= 976.2 rpm Ans.

For a central load of F on a fixed end beam. the maximum bending moment is M = FI/S.
From the formula for beam bending, we have

M o

I y
x(0.0125)°
4

Substituting for the maximum bending moment M, the moment of inertia / and the value
of maximum permissible bending stress of 11.77 k-N/em® in the expression for beam-bending,

where I=

Note 2: The bending moment quation is given by% = % . For shaft on Long bearings It is

. ps Fl/8 o
modified and used as a2
. P Fl/4

For short bearings it is used as T/ = d;;z
we have

FI _1.77x107

8/ 0.0125/2

7 yeyd

— L 8x177x10" 200125

X
0.0125/2 64 0.6

Maximum deflection produced under the above dynamic load 1s:

= 301 x 06" x 64

= = 0.00144 metres
192(1.96 x 10" ) x 2(0.0125)"

Thus, with s= 000144 and ¢ = 0.0005 m, we have

000144 *
+ =

T00005 -,

Arranging in the form of a quadratic equation in r, the frequency ratio, we have
> - - b > b
r=288-288r" and r°=-288 + 288 r

Thus, the two limiting values of r are:

2 2.88
"= V388 and \l_tig
Therefore Npin = N = 0.86 X 976.2 = 839.5 rpm
and Npax = 1N, = 1.238 x 976.2 = 1208.5 rpm Ans.
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S6ME MBITS- DYNAMICS OF MACHINERY MODULE-VI

TORSIONAL VIBRATIONS- SINGLE ROTOR SYSTEM

Consider a heavy rotor attached to the end of a light flexible shaft as shown in the figure. The
rotor receives an instantaneous torque, on removal of which executes twisting and untwisting
motion about longitudinal axis, called torsional vibrations.

. . . . . 1 1 C
The natural frequency of free torsional vibrations is given by f,a = /q—A Hz =5~ /ﬁ Hz
AlA

Iy

Where |4 is the mass moment of inertia of rotor A, La is the distance of
the node(nodes are points of zero vibration) from Rotor A’s end. Here

4
L node occur at fixed end. [Also In = maKa? kgm?and J = % m*]

j q4 is called the torsional stiffness which is the torque required to produce
. unit twist at rotor A.

() (d)

In a two rotor system the two rotors receives equal and opposite momentarily torques , on
removal of which executes free torsional vibrations. As the rotors twist in opposite directions we
expect a node (zero vibration point) in between rotors A and B at a distance La from A’s end (or
Lg from B’s end). The behavioural aspect of the node is to separate the original shaft into two
separate single rotor systems fixed at one end as shown in the figures (fig ¢ and d). Therefore
either the shaft shown in figure ¢ or d can be used to find the frequency(using the expression for
a single rotor system) and both the frequencies should be the same as they belong to the same
parent shaft. Frequencies of the two split portions which are same will be

3|Page
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1 C 1 Cc . - - . . .
— /—] =— /—] Hz  which yields an important relation connecting the end rotors in a
2| Lalg 2m | Lglp

two rotor system given by L,l, = Lglg . Thuswe require either La or Lg to be found out for

evaluating the frequencyas L, =L L orLg=1L 4 where L is the total length of the parent
Ip+Ipg Ip+Ipg

shaft.

THREE ROTOR SYSTEM

We expect two nodes N; and N respectively in between the two opposite twisting rotors A&B
and B&C respectively. The nodes are assumed to split the shaft portions into three as shown. For

the split Figures a and ¢ we get a single rotor system for which the below expression may be
applied.

=1 /i = /i Hz vyields the important relation connecting the two end rotors A and C
21 Lalyg 2 Lclc

in a three rotor system which is L,I, = L:I.. For the middle split portion and the end split portion
the expression applied is
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1/ _yfexs[ I
2x Yiiexl. “2n ' Iy | -Ly T (WL-Lo)

Which yiedls the important expression connecting the Middle rotor and end rotor as:

1 _l 1 N 1
Lexle lg| (Ly=L,) (Ly-Ly)

TORSIONALLY EQUIVALENT SHAFT

If a stepped shaft of different diameters and length is given, we have to convert it into a
torsionally equivalent shaft which can be defined as a shaft of uniform diameter and length
which exhibits the same torsional behavior as that of the stepped shaft of different diameters
and lengths when equal and opposite torques are applied at the rotors.

fbr T‘_\ r»T Tﬁ
!
L

_ ‘ | d=d, |

i
—-l*—t‘—-l‘— ;>

.
d,
t
( ‘—L'

(a) Shaft of varying diameters. (b) Torsionally equivalent shaft.
The length L of the torsionally equivalent shaft is derives as:

TxL TxLy TxLy TxLa
JxC JixC JaxC JaxC
L_Li Ly Ls
Jd 1 Jz J3
L L La L3

. w
b4 n T ;)
53¢ gzt gt g

If we choose to select the diameter d of the equivalent shaft as d; , the diameter of the first step

L4: ll4+ o L}4
(d) (dy) (dy)

(flg)4
4 4
L, = 1,+La(‘—"—\+z;("—'§)
: i (/2 ’ d}
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THREE ROTOR SYSTEM PROBLEM

Problem3. A three rotor system is as shown in the figure. Find the natural frequency of free
torsional vibrations. Take Modulus of Rigidity as 84 X 10 ? N/m?

/ /

(a) 4--|%mm= 4 . xiT-I]mm

Ly 2.0 m—]

O O ——13= 40 m—n-o

ACP’ Shaft 1 Shaft 2 Oé
/ /

{a) 4--]%mm—- 4 . xlTﬂmm

—— L1=2.CIIT'I —

O

1
— 2= 4.0 M—=

(c)

(d

L=147m Lz0B88m |
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GEARED SYSTEM

If a geared system will be given, first it is converted either into an equivalent two rotor system or
a three rotor system (as required in the question) before applying respectively the expressions of
a two rotor system or a three rotor system as the case may be: (see the problems 3 and 4)

Problem 3 - A shaft carries a motor at one end and a pinion on the other end. The length and diameter
of this shaft are 500 mm and 60 mm respectively. There is another shaft of length 900 mm and of diameter
100 mm. This shaft carries a gear wheel at one end and a centrifugal pump on another end. The gear wheel
and pinion are meshing together so that the centrifugal pump is driven by the motor. The mass moment of
inertia of motor and centrifugal pump are 200 kg m* and 750 kg m® respectively. If the inertia of gears and
shaft is neglected and pump speed is one third of the motor then find the frequency of rorsional vibrations of
the system. Take the value of modulus of rigidity as 80 kN/mm’.

The inertia of the gear pairs are neglected . Therefore we get an equivalent two rotor system

A Motor
Shaft 1
/ é1 e )
Pinion C
(a) ---|60mm-— P
Shaft 2 C)' -
Gear / 7
Wheel S 'oo mm _._.—r
§
Bg
be-L4=500m L';:SOOmrn—dd

(c)

. Speed of the Driver _ Speed of the motor
Gear Ratio (GR) =22e o/ iver _ Speed of =3
Speed of the Driven speed of the pump

Il 750 750 )
.',': zaﬁz-?-rT-EJSkgm
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4 4
d
L!=GR1>:(EL) % Li=32x [ﬂ] % 900 = 1049.76 mm = 1050 mm
2

Therefore the total length L of the equivalent shaft = 1050 mm + 500 mm = 1550 mm = 1.55 m

Fig (c) shows the position of node ¥V on the equivalent system.
Let L, = Distance of node N from rotor A,
L. = Distance of node N from rotor C
For end rotors  we know that

L,q_ X I_* = 'LC X IC
Ly=x200=L. x8333 (v I =83.33 calculated above)
= (L -L,) x 83.33 (v Lc =L-=Ly)

=(1.55-L,) x 83.33 (- L =1.55m calculated above)
Ly x 200
8333 - 1.55-L,
24L,=155-L,
34L, = 155
1.55

Lﬂ=ﬁ=ﬂ4553 =0.456 m = 456 mm

The frequency of torsional vibration is given by,

L= ’C xi’ where J = Polar moment of inertia of the equivalent shaft
A X

=3 Zdt= 3" (0.06)* =127 x 10 m*

_1 (80 x 10°) x (1.27 x 107%)
\/ 200 3 0.456 Hz =531 Hz. Ans.

Problem 4 .A reciprocating 1.C. engine is coupled to a centrifugal pump through a pair of gears.
The shaft from the flywheel of the engine to the gear wheel has a 45 mm diameter and is 1 m long. The shaft
from the pinion to the pump has a 30 mm diameter and is 810 mm long. Pump speed is four times the engine
speed. The moment of inertia of flywheel, gear wheel, pinion and pump are 400 kg n’, 8 kg m?, 2 kg m’ and

10 kg m? respectively. If the modulus of rigidity of shaft material is 80 GN/n?’, then find the natural frequency
of torsional vibrations of the system.

Gear Ratio (GR) _Speed of the Driver Speed of the engine - 1 =0.25

Speed of the Driven speed of the pump 4

l
L -—C-= 10 - 160 kg m?

R? (1/4 Also Ig = g1+ 2oy Isez - g +(2/0.25%) = 40 kg m?

. 4
-Gsz xL;:u.zﬁxri x 810= 256 mm
dy J‘ 30

Therefore the total length L of the eq. shaft = 1.26 m
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Engine
A
C)’ Shaft 1

B
/ ! _ Pinion C.
(a) —4--]|95mm-— ) Pum
Shaft 2 O’ ump
Gear /
wheel . 30 mm
Bg
by =1000MM L= B10mMm—s]
C
On ? Q
) 4 ——— - 45111;]: —
s — —— | : |—2_-
O 0O O
INnde
(c) -
|"—LA-—"+"—|-.C—'J
ol

We know that Ly = [, =Lc wl,

Lo xlc L x160
Ly=-c e fe X0 =04L_
A A 400

L1
Lexdy g

(L ,1,1 th-Lf}]
L 1 1
xlm'm[u “Ly T (016 !cll 40| (1- n-ut] ©16-Le) | pocause @La=04L)

6L % ~5.704L¢ +0.16=0

57042V5704° -4x6x.16 5704 + 5357
2% 6 12
Ly=04xL_ =0.4x0.92=0368 mand 0.4 x 0.0289 = 0.01156 m,

= (.92 m and 0.0284 m

Lc‘
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Lc=0.92m is not acceptable as the distance runs out of the shaft length between B and C (of
0.26 m). Therefore the acceptable length L = 0.368m gives the single node frequency (Fig c) as
follows:

= 2‘1 V LC xJ where J = Polar moment of inertia of equivajent shaft

a %1y

= 12 (d*) = % (0.045)* = 4.0258 x 107" m*

1 1/ (80 x 10°) x 4.0258 x 10”7
\/ Ty =235Hz. Ans.
The other set L.e. L. =0.0289 m and L, = 0.01156 m will give the two-node frequency.

I _ 1 4 f Cxd
"2 2x ¥ L =1,

1 -\/ (80 x 10%) x (4.0258 x 10~)
0.01156 x 400
= llll! Hz. Ans.
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TWo DOEGREE OF FREEDoM SYSTEM
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THREE OE@GREE OF FREEDomM SYSTEMS

g ™, :;:: 25 pri + Kz(xi"‘xz):o %, 7 A,9""">t
2 X,z A $vat
X e g . 2 2
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VIBRATION ABSORBERS
i) Centrifugal Pendulum Vibration Absorber

A pendulum of mass m and length L attached to the rotating body (shown as circle here) can
experience centrifugal force, as shown in the figure and therefore absorbs vibrations from the
rotating body. The pendulum oscillates with frequency proportional to the rps (N) of the rotating
body given as:

i) Coupled spring mass Vibration Absorber

A spring mass (kz , my) coupled to the original system (ki , m; and natural frequency w; = \/g)
1

absorbs vibration from the latter provided the natural frequency of the former (o, = /:l—z) is
2

equal to the the frequency of the external excitation force () and the mass ratio (n = % ) is
2

. w _ U 2
adjusted such that w__(1+5)i m+

2

Note: If simple numerical problems, from the same topic is asked for the
exams calculate the values of frequencies and mass ratio as given above
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ky/2

k2
x'r— Yy lFsinwt xlr—- Ty _lFslnmt

X3

-

(a) Main system (b) Vibration absorber
attached to main system

Vibration Exciters

A vibration exciter is a machine which produces mechanical vibratory motion to provide forced
vibration to a specimen on which modal analysis and testing is to be performed. Vibration
exciters (or shakers) are helpful in the determination of dynamic characteristics of machines and
structures. They are also used in the fatigue testing of materials. Two types are discussed here:

1. Mechanical Exciters

Gopn AR Girder
| \--v-}“\-_x} /
1 1

‘I
FLE) ~ 2 mRu’ cos wt

< Building frame

T T T T T T I P Ty rryrrrrrrrrrrrrrry

These type of exciters makes use of unbalance created by two masses rotating at the same speed
in the opposite directions. This periodic unbalanced force(see figure) provides excitation for the
structure to be tested (which is placed on the top platform).

2. Electrodynamic shaker

14| Page
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In this type a current (I) passes through the coil generating a force directly proportional to the
current. If the magnetic flux intensity is B tesla the force produced by the coil in the magnetic
field is given by F=BII where | is the length of the coil. This force accelerates the component on
the shaker table.

E —
—— \L f Pexible suppoct
}
\ o Mavay ciement
Codd
Magnet
(=)
AcockTMIon  Natyral frequency Nateral frequency
of the Nexbie wppat of the mouving clewent

|
|
i
|
)

) N S———

'i
|

@)
Vibration measuring Instruments (Seismic Instruments)-Vibrometers and Accelerometers

The seismic instrument is a device which has the functional form of mass connected through
spring and damper arrangement to the housing frame. The frame is then connected to the source
of vibration whose characteristics are to be measured. The mass tends to remain fixed in its
spatial position so that the vibrational motion is registered as a relative displacement between the
mass and the housing frame. This displacement is then sensed and indicated by an appropriate
transducer, as shown in Figure; of course, the seismic mass does not remain absolutely steady
but for selected frequency ranges it may afford a satisfactory reference position. The seismic
instrument may be used for either displacement or acceleration measurements by proper
selection of mass, spring and damper combinations. In general, a large mass and soft spring are

15|Page
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used for vibrational displacement measurements, while a relatively small mass and stiff spring
are used for acceleration indications.

Vibrometer (Seismometer)

A large mass and soft spring are used for vibrational displacement measurements

The governing equation is mj + c(x'—y) + k(x-y) = 0 and the equation connecting maximum
relative displacement (between mass and support) U and the maximum displacement of support
Y is obtained from the previous module (see the topic motion of the support)

v r?

= ———-——Wherer= w& For higher values of r (3 or above) and no damping { =0 , the

Ys  J(20r)2+(1-12)2

. U r
mes — = + ~
equation becomes v =taoy

2
1.

That is U will be approximately Y That is the relative amplitude will be the amplitude of the vibrating
body and it is recorded in the displacement transducer. To retain higher values of r a large mass and soft

. k . . .
spring are selected (owp = \/; so higher value of m and lower value of k results in lowering o, and
therefore higher r value results in).

Accelerometer

A relatively small mass and a stiff spring (lighter in construction when compared to the above)
are used for acceleration indications. That is r will be practically very small and { =0, the

- U
equation becomes o= r2orU=Y, r? = ys[mi] 2
n

N

=[Ys ©® x constant] means constant times acceleration (acceleration= Y w?). So measuring U
we can get acceleration directly.
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Self Excited vibrations and stability analysis

Self-excited vibrations are disturbances belong to a fundamentally different class as compared to
the free or forced vibrations. In a self-excited vibration, the excitation force that sustains the
motion is created or controlled by the motion itself; when the motion stops the excitation
force disappears. In a forced vibration the sustaining excitation force exists independent of the
motion and persists even when the vibratory motion is stopped. An unbalanced disc mounted on
a flexible shaft running in two bearings executes an ordinary transverse forced vibration.

h“ﬁ‘ |

R

Figure 11.1 {a) A flexible shaft on rigid beanngs(b) A rigid shaft on the flexible beanngs

On preventing the disc transverse motion by mounting two ball bearing a and b on the shaft
adjacent to the disc as shown in Figure 11.1(a) and attaching their outer races to solid foundation,
thus preventing vibration of the disc but leaving the rotation undistributed. Since the unbalance is
still rotating, the external sinusoidal force remains. If a perfectly balanced rotor is mounted on
two fluid-film bearings as shown in Figure 11.1(b) and operating conditions are such that it is in
self excited vibration then if we try to prevent motion of rotor ends at bearings the self-excited
vibration will vanish and excitation force will dies down. Alternatively, a self-excited vibration
can be defined as a free vibration with the negative damping. A positive viscous damping
force is a force proportional to the velocity of vibration and directed opposite to it. A negative
viscous damping force is also proportional to the velocity but has the same direction as the
velocity. Instead of diminishing the amplitude of the free vibration, the negative damping
will increase them. Since the damping force, whether positive or negative, vanishes when the
motion stops. So the second definition of the self-excitation is in line with the first one. The
single-DOF rotor system equation of motion with negative damping can be written as

@

. ] . ot (A 2 t+Bdngm
my -cy + ky= 0. The solution of which can be written as y=¢ ( cose.t gﬂ‘ﬂ‘E]

where o, = \/% which is a vibration with exponentially increasing amplitude due to the term,

Cy
—

Im
<)
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Exponential
. amplification - - - Expoaential decay

Jawh\ Wi
vV

0
) \/ vy
(a) Dynamically unstable (b) Dynamically stable
Yin ¥
0 0
I I
(¢) Statically unstable (d) Statically stable

Figure 11.2 Different types of stable and unstable responses

A system with positive damping is called to be dynamically stable (see Figure 11.2b), whereas
one with negative damping is known as dynamically unstable (Fig. 11.2a). On the similar
lines static instability (Fig. 11.2c) can be defined as a system with negative spring constant
(or more generally a negative value of one of the natural frequency square, ’). The
dynamically stability always preposes the static stability (Fig. 11.2d), but that the converse is not
true: a statically stable system may be dynamically unstable.

Vibration Control

Vibration control implies Control of vibrations or vibration suppression which is possible using
various passive and active methods.

Passive action is independent of the resulting vibration — Open Loop System.

Active method is dependent on the resulting vibration — Closed Loop System.

' o

Additional Excitation

|

Excitation -
» System | > Response

(i) Excitation ) System L
reduction at Scurce Modificatio
Energy
(v) Use response as a Conversion

source of excitation
and convert

mechanical energy
to electrical energy

(iii) Source isolation by using
vibration isolators barriers or
sound absorbing materials
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Reduction of excitation at source is done by: balancing of unbalanced inertia forces — rotors,
engines, changing the flow characteristics for flow induced vibrations, reducing friction,
avoiding vortex shedding to reduce self-excitation, reduce parameter variation for parametric
excitation etc.

Isolation of the source is done by modifying the transmission path of vibration between source
and the system to protect the system and this is done by the insertion of resilient elements —
Springs, Dampers, visco-elastic Materials, Pneumatic Suspension etc. between the source and the
system.

A large number of methods exist in system modification group including detuning, decoupling,
using additive damping treatments (constrained and unconstrained), stiffeners and massive
blocks (as foundation).

Redesign of a vibrating system involves modelling of materials - generally structural materials:
metals and alloys and viscoelastic polymers: natural and synthetic rubbers (with additive).

Steps in Vibration control

A. ldentification and characterization of the source of vibration.

B. Specify the level to which the vibration should be reduced.

C. Select the method appropriate for realizing the vibration reduction level identified in step
B.

D. Prepare an analytical design based on the method chosen in step C.

E. Realize in practice (i.e. hardware mechanization of) the analytical design constructed in
step D.

*Vibration Isolation (and transmissibility) are included in Module V notes
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