Scheduling Criteria

CPU utilization — keep the CPU as busy as possible (from 0% to
100%)

Throughput — # of processes that complete their execution per
time unit

Turnaround time — amount of time to execute a particular
Process

Waiting time — amount of time a process has been waiting in the
ready queue

Response time — amount of time it takes from when a request was
submitted until the first response is produced

*Optimization Criteria

= Max CPU utilization
= Max throughput

= Min turnaround time
= Min waiting time

= Min Response time

iScheduling Algorithems

= First Come First Serve Scheduling
= Shortest Job First Scheduling

= Priority Scheduling

= Round-Robin Scheduling

= Multilevel Queue Scheduling

= Multilevel Feedback-Queue
Scheduling

First Come First Serve

*Scheduling (FCFS)

Process Burst time

P1 24
P2 3
P2 3

Suppose that the processes arrive in the order: P, , P, , P,

The Gantt Chart for the schedule is:

P

P,

P;

24

27

30

First Come First Serve

*Scheduling

= The average of waiting time in this
policy is usually quite long

= Waiting time for P1=0; P2=24; P3=27

= Average waiting time=
(0+24+27)/3=17

First Come First Serve

*Scheduling

= Suppose we change the order of
arriving job P2, P3, P1

The Gantt chart for the schedule is:

P, P, P,

0 3 6 30
Waiting time for P, =6,P,=0 P,=3
Average waiting time: (6+0+3)3=3

First Come First Serve

iScheduling

= Consider if we have a CPU-bound process and
many I/O-bound processes

* There is a convoy effect as all the other
processes waiting for one of the big process
to get off the CPU

= FCFS scheduling algorithm is non-preemptive

iShort job first scheduling (SJF)

= This algorithm associates with each
process the length of the processes’
next CPU burst

= If there is a tie, FCFS is used

= In other words, this algorithm can be
also regard as shortest-next-cpu-burst
algorithm

*Short job first scheduling

= SJF is optimal — gives minimum average
waiting time for a given set of
processes

*Example

Processes Burst time

P1 6
P2 8
P3 7
P4 3

FCFS average waiting time: (0+6+14+21)/4=10.25
SJF average waiting time: (3+16+9+0)/4=7

iShort job first scheduling

Two schemes:

Non-preemptive — once CPU given to the
process it cannot be preempted until
completes its CPU burst

Preemptive — if a new process arrives with CPU
burst length less than remaining time of
current executing process, preempt. This
scheme is know as the Shortest-Remaining-
Time-First (SRTF)

Short job first scheduling-

*Non preemptive

Process Arrival Time Burst Time
P, 0.0 7
P, 2.0 4
P 4.0 1
P, 5.0 4
SJF (non-preemptive)
P, P P P4
b=ttt} sttt
0 3 7 8 12 16

Average waitingtime=(0+6 +3 +7)/4 =4

Short job first scheduling-

*Preem ptive

Process Arrival Time Burst Time
P, 0.0 7
P, 2.0 =
P, 4.0 1
P, 5.0 4
SJF (preemptive)
P, P, [P, P, Py P,
bt | | —
o 2 4 5 7 1

Average waitingtime=(9+ 1+ 0 +2)/[4 =3

iPriority Scheduling

A priority number (integer) is associated with each
process

The CPU is allocated to the process with the highest
priority

(smallest integer = highest priority)

" Preemptive

= Non-preemptive

SJF is a special priority scheduling where priority is the
predicted next CPU burst time, so that it can decide
the priority

iPriority Scheduling

Processes Burst time Priority Arrival time

P1 10 3
P2 1 1
P3 2 4
P4 1 >
P5 5 2

The average waiting
time=(6+0+16+18+1)/5=8.2

iPriority Scheduling

Processes Burst time Priority Arrival time

P1 10 3 0.0
P2 1 1 1.0
P3 2 4 2.0
P4 1 5 3.0
P5 5 2 4.0

Gantt chart for both preemptive and non-
preemptive, also waiting time

iPriority Scheduling

Problem : Starvation — low priority
processes may never execute

Solution : Aging — as time progresses
increase the priority of the process

iRound-Robin Scheduling

= The Round-Robin is designed especially
for time sharing systems.

= It is similar FCFS but add preemption
concept

= A small unit of time, called time
quantum, is defined

iRound-Robin Scheduling

= Fach process gets a small unit of CPU
time (time quantum), usually 10-100
milliseconds. After this time has
elapsed, the process is preempted and
added to the end of the ready queue.

*Round-Robin Scheduling

Process Burst Time
P, 53
P, 17
P, 68
P, 24

The Gantt chart is:

PP [P PP |Py|P [P | PP,

0 20 37 57 77 97 117 121 134 154 162

iRound-Robin Scheduling

= If there are n processes in the ready
queue and the time quantum is g, then
each process gets 1/n of the CPU time
in chunks of at most g time units at
once. No process waits more than

(n-1)g time units.

iRound-Robin Scheduling

Performance
= glarge => FIFO

= gsmall => g must be large with
respect to context switch, otherwise
overhead is too high

= Typically, higher average turnaround
than SJF, but better response

‘Round -Robin Scheduling

process time = 10 ‘quantum conlext |
switches

1 2 3 4 5 6 7 8 9 10

iMultileveI Queue

Ready queue is partitioned into separate
queues:

= foreground (interactive)
= background (batch)

Each queue has its own scheduling algorithm

foreground — RR
background — FCFS

*Multilevel Queue example

= Foreground P1 53 (RR interval:20)
P2 17
P3 42

= Background P4 30 (FCFS)
P5 20

iMultilevel Queue

Scheduling must be done between the queues

= Fixed priority scheduling; (i.e., serve all from
foreground then from background). Possibility
of starvation.

= Time slice — each queue gets a certain
amount of CPU time which it can schedule
amongst its processes; i.e., 80% to
foreground in RR

Multilevel Queue

highest prionity

APV IO AR O 3
g .

! ™~ - » |
s £ o | l'.:“' nds ‘I.&-";LX:‘-*—\ 1/ !’.

Multilevel Feedback Queue

Three queues:

®* (0 - RR with time quantum 8 milliseconds
= Q1 - RR time quantum 16 milliseconds

= Q2-FCFS

Scheduling

A new job enters queue Q0 which is served FCFS. When it
gains CPU, job receives 8 milliseconds. If it does not finish in 8
milliseconds, job is moved to queue Q1.

At Q1 job is again served FCFS and receives 16 additional
milliseconds. If it still does not complete, it is preempted and
moved to queue Q2.

iMultilevel Feedback Queue

q quantum = 8
—ol quantum = 16 La—

, FCFS | '

*Multilevel Feedback Queue

= P1 40
= P2 35
= P3 15

5.4 Multiple-Processor

*Scheduling

= We concentrate on systems in which the
processors are identical (homogeneous)

= Asymmetric multiprocessing (by one
master) is simple because only one processor
access the system data structures.

= Symmetric multiprocessing, each
processor is self-scheduling. Each processor
may have their own ready queue.

iLoad balancing

= On symmetric multiprocessing systems,
it is important to keep the workload
balanced among all processors to fully
utilized the benefits of having more
than one CPU

" There are two general approached to
load balancing: Push Migration and
Pull Migration

*Symmetric Multithreading

= An alternative strategy for symmetric
multithreading is to provide multiple
logical processors (rather than physical)

= [t's called hyperthreading
technology on Intel processors

*Symmetric Multithreading

= The idea behind it is to create multiple logical
processors on the same physical processor
(sounds like two threads)

= But it is not software provide the feature, but
hardware

= Each logical processor has its own
architecture state, each logical processor is
responsible for its own interrupt handling.

*Symmetric Multithreading

system bus

