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    UNIT-II 
STATIC AND DYNAMIC FORCE ANALYSIS OF PLANAR MECHANISMS 

 Static Force Analysis 

 A machine is a device that performs work and, as such, transmits energy by 

means mechanical force from a power source to a driven load. It is necessary in the 

design machine mechanisms to know the manner in which forces are transmitted from 

input to the output, so that the components of the machine can be properly size withstand 

the stresses that are developed. If the members are not designed to strong enough, then 

failure will occur during machine operation; if, on the other hand, the machine is over 

designed to have much more strength than required, then the machine may not be 

competitive with others in terms of cost, weight, size, power requirements, or other 

criteria. The bucket load and static weight loads may far exceed any dynamic loads due to 

accelerating masses, and a static-force analysis would be justified. An analysis that 

includes inertia effects is called a dynamic-force analysis and will be discussed in the 

next chapter. An example of an application where a dynamic-force analysis would be 

required is in the design of an automatic sewing machine, where, due to high operating 

speeds, the inertia forces may be greater than the external loads on the machine. 

  Another assumption deals with the rigidity of the machine components. No 

material is truly rigid, and all materials will experience significant deformation if the 

forces, either external or inertial in nature, are great enough. It will be assumed in this 

chapter and the next that deformations are so small as to be negligible and, therefore, the 

members will be treated as though they are rigid. The subject of mechanical vibrations, 

which is beyond the scope of this book, considers the flexibility of machine components 

and the resulting effects on machine behavior. A third major assumption that is often 

made is that friction effects are negligible. Friction is inherent in all devices, and its 

degree is dependent upon many factors, including types of bearings, lubrication, loads, 

environmental conditions, and so on. Friction will be neglected in the first few sections of 

this chapter, with an introduction to the subject presented. In addition to assumptions of 

the types discussed above, other assumptions may be necessary, and some of these will 

be addressed at various points throughout the chapter. 

  The first part of this chapter is a review of general force analysis principles and will 

also establish some of the convention and terminology to be used in succeeding sections. The 

remainder of the chapter will then present both graphical and analytical methods for static-

force analysis of machines. 

Free-Body Diagrams 

Engineering experience has demonstrated the importance and usefulness of free-body 

diagrams in force analysis. A free-body diagram is a sketch or drawing of part or all of a 

system, isolated in order to determine the nature of forces acting on that body. Sometimes 

a free-body diagram may take the form of a mental picture; however, actual sketches are 

strongly recommended, especially for complex mechanical systems. 
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Generally, the first, and one of the most important, steps in a successful force 

analysis is the identification of the free bodies to be used. Figures 5.1B through 5.1E 

show examples of various free bodies that might be considered in the analysis of the four-

bar linkage shown in Figure 5.1A. In Figure 5.1B, the free body consists of the three 

moving members isolated from the frame; here, the forces acting on the free body include 

a driving force or torque, external loads, and the forces transmitted: 

 

 

Static Equilibrium 

For a free body in static equilibrium, the vector sum of all forces acting on the body must 

be zero and the vector sum of all moments about any arbitrary point must also be zero. 

These conditions can be expressed mathematically as follows: 

 

Since each of these vector equations represents three scalar equations, there are a total of 

six independent scalar conditions that must be satisfied for the general case of equilibrium 

under three-dimensional loading.  

There are many situations where the loading is essentially planar; in which case, forces 

can be described by two-dimensional vectors. If the xy plane designates the plane of 

loading, then the applicable form of Eqs. 5.1A and 5.1B is:- 
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Eqs. 5.2A to 5.2C are three scalar equations that state that, for the case of two-

dimensional xy loading, the summations of forces in the x and y directions must 

individually equal zero and the summation of moments about any arbitrary point in the 

plane must also equal zero. The remainder of this chapter deals with two-dimensional 

force analysis. A common example of three-dimensional forces is gear forces. 

Graphical Force Analysis: 

Graphical force analysis employs scaled free-body diagrams and vector graphics 

in the determination of unknown machine forces. The graphical approach is best suited 

for planar force systems. Since forces are normally not constant during machine motion. 

Analyses may be required for a number of mechanism positions; however, in many cases, 

critical maximum-force positions can be identified and graphical analyses performed for 

these positions only. An important advantage of the graphical approach is that it provides 

useful insight as to the nature of the forces in the physical system. 

This approach suffers from disadvantages related to accuracy and time. As is true 

of any graphical procedure, the results are susceptible to drawing and measurement 

errors. Further, a great amount of graphics time and effort can be expended in the 

iterative design of a machine mechanism for which fairly thorough knowledge of force-

time relationships is required. In recent years, the physical insight of the graphics 

approach and the speed and accuracy inherent in the computer-based analytical approach 

have been brought together through computer graphics systems, which have proven to be 

very effective engineering design tools. There are a few special types of member loadings 

that are repeatedly encountered in the force analysis of mechanisms, These include a 

member subjected to two forces, a member subjected to three forces, and a member 

subjected to two forces and a couple. These special cases will be considered in the 

following paragraphs, before proceeding to the graphical analysis of complete 

mechanisms 

Analysis of a Two-Force Member: 

A member subjected to two forces is in equilibrium if and only if the two 
forces (1) have the same magnitude, (2) act along the same line, and (3) are opposite 
in sense. Figure 5.2A shows a free-body diagram of a member acted upon by forcesF1 
and F2 where the points of application of these forces are points A and B. For 
equilibrium the directions of F1 and F2 must be along line AB and F1 must equal −F2 
graphical vector addition of forces F1 and F2 is shown in Figure 5.2B, and, obviously, 
the resultant net force on the member is zero when F1 = −F2 . The resultant moment 
about any point will also be zero. 

Thus, if the load application points for a two-force member are known, the 

line of action of the forces is defined, and it the magnitude and sense of one of the 

forces are known, then the other  

Force can immediately be determined. Such a member will either be in 

tension or compression. 
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Analysis of a Three-Force Member 

A member subjected to three forces is in equilibrium if and only if (1) the 

resultant of the three forces is zero, and (2) the lines of action of the forces all 

intersect at the same point. The first condition guarantees equilibrium of forces, while 

the second condition guarantees equilibrium of moments. The second condition can 

be under-stood by considering the case when it is not satisfied. See Figure 5.3A. If 

moments are summed about point P, the intersection of forces F1 and F2 , then the 

moments of these forces will be zero, but F3 will produce a nonzero moment, 

resulting in a nonzero net moment on the member. On the other hand, if the line of 

action of force F3 also passes through point P (Figure 5.3B), the net moment will be 

zero. This common point of intersection of the three forces is called the point of 

concurrency. 

A typical situation encountered is that when one of the forces, F1 , is known 

completely, magnitude and direction, a second force, F2 , has known direction but 

unknown magnitude, and force F3 has unknown magnitude and direction. The 

graphical solution of this case is depicted in Figures 5.4A through 5.4C. First, the 

free-body diagram is drawn to a convenient scale and the points of application of the 

three forces are identified. These are points A, B, and C. Next, the known force F1 is 

drawn on the diagram with the proper direction and a suitable magnitude scale. The 

direction of force F2 is then drawn, and the intersection of this line with an extension 

of the line of action of force F1 is the concurrency point P. For equilibrium, the line 

of action of force F3 must pass through points C and P and is therefore as shown in 

Figure 5.4A. 

The force equilibrium condition states that 

F1 + F2 + F3 = 0 

Since the directions of all three forces are now known and the magnitude of F1 were 

given, this equation can be solved for the remaining two magnitudes. A graphical 

Solution follows from the fact that the three forces must form a closed vector loop, 

called a force polygon. The procedure is shown in Figure 5.4B. Vector F1 is redrawn 
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From the head of this vector, a line is drawn in the direction of force F2, and from 

the tail, a line is drawn parallel to F3 . The intersection of these lines closes the vector 

loop and determines the magnitudes of forces F2 and F3. Note that the same solution 

is obtained if, instead, a line parallel to F3 is drawn from the head of F1  and a line 

parallel to F2 is drawn from the tail of F1 . See Figure 5.4C 

 

This is so because vector addition is commutative, and, therefore, both force 

polygons are equivalent to the vector equation above. It is important to remember that, 

by the definition of vector addition, the force polygon corresponding to the general 

force equation 

∑F = 0 
 
 
Will have adjacent vectors connected head to tail. This principle is used in 

identifying the sense of forces F2 and F3 in Figures 5.4B and 5.4C. Also, if the lines of 

action ofF1 and F2 are parallel," then the point of concurrency is at infinity, and the 

third force F3 must be parallel to the other two. In this case, the force polygon 

collapses to a straight line. 
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Dynamic Force Analysis 

D'Alembert's Principle and Inertia Forces 

An important principle, known as d' Alembert's principle, can be derived from 

Newton's second law. In words, d' Alembert's principle states that the reverse-

effective forces and torques and the external forces and torques on a body together 

give statical equilibrium 

F + ( − maG ) = 0 (5.3A) 

TeG + ( − I G α ) = 0 (5.3B) 

The terms in parentheses in Eqs. 5.3A and 5.3B are called the reverse-effective force 

and the reverse-effective torque, respectively. These quantities are also referred to as 

inertia force and inertia torque. Thus, we define the inertia force F, as 

 

This reflects the fact that a body resists any change in its velocity by an inertia force 

proportional to the mass of the body and its acceleration. The inertia force acts 

through the center of mass G of the body. The inertia torque or inertia couple C, is 

given by: 

 

As indicated, the inertia torque is a pure torque or couple. From  Eqs. 5.4A and 
5.4B, their directions are opposite to that of the accelerations. Substitution of  Eqs. 
5.4A and 5.4B into Eqs, 5.3A and 5.3B leads to equations that are similar to those 
used for static-force analysis: 

 

Where ∑F refers here to the summation of external forces and, therefore, is the 
resultant external force, and ∑TeG is the summation of external moments, or resultant 
external moment, about the center of mass G. Thus, the dynamic analysis problem is 
reduced in form to a static force and moment balance where inertia effects are treated 
in the same manner as external forces and torques. In particular for the case of 
assumed mechanism motion, the inertia forces and couples can be determined 
completely and thereafter treated as known mechanism loads. 

Furthermore, d' Alembert's principle facilitates moment summation about any 
arbitrary point P in the body, if we remember that the moment due to inertia force F, 
must be included in the summation. Hence, 

 

Where; ∑T P is the summation of moments, including inertia moments, about point  
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∑TeP   is the summation of external moments about P, C, is the inertia couple defined 
by Eq. 5.4B, F, is the inertia force defined by Eq. 5.4A, and RPG is a vector from point P 
to point C. It is clear that Eq. 5.5B is the special case of Eq.5.5C, where point P is taken 
as the center of mass G (i.e., RPG =0). 

For a body in plane motion in the x y plane with all external forces in that plane. Eqs. 
5.5A and 5.5B become: 

 

Where aGx and aGy are the x and y components of aG. These are three scalar 

equations, where the sign convention for torques and angular accelerations is based 

on a right-hand xyz coordinate system; that is. Counterclockwise is positive and 

clockwise is negative. The general moment summation about arbitrary point P, Eq. 

5.5C, becomes: 

 

Where RPGx and RPGy are the x and y components of position vector RPG. This 

expression for dynamic moment equilibrium will be useful in the analyses to be 

presented in the following sections of this chapter. 

Equivalent Offset Inertia Force 

For purposes of graphical plane force analysis, it is convenient to define what is 

known as the equivalent offset inertia force. This is a single force that accounts for 

both translational inertia and rotational inertia corresponding to the plane motion of a 

rigid body. Its derivation will follow, with reference to Figures 5.7A through 5.7D. 

Figure 5.7A shows a rigid body with planar motion represented by center of mass 

acceleration aC and angular acceleration α . The inertia force and inertia torque 

associated with this motion are also shown. The inertia torque −IG α can be expressed 

as a couple consisting of forces Q and (- Q) separated by perpendicular 
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Distance h , as shown in Figure 5.7B. The necessary conditions for the couple to be 

equivalent to the inertia torque are that the sense and magnitude be the same. 

Therefore, in this case, the sense of the couple must be clockwise and the magnitudes 

of Q and h must satisfy the relationship 

      

Otherwise, the couple is arbitrary and there are an infinite number of possibilities that 

will work. Furthermore, the couple can be placed anywhere in the plane. 

Figure 5.7C shows a special case of the couple, where force vector Q is equal to 

maG and acts through the center of mass. Force (- Q) must then be placed as shown to 

produce a clockwise sense and at a distance; 

      

Force Q will cancel with the inertia force Fi= - maG, leaving the single equivalent 

offset force shown in Figure 5.7D, which has the following characteristics: 

 The magnitude of the force is | maG |. 

 The direction of the force is opposite to that of acceleration α . 

 The perpendicular offset distance from the center of mass to the line of action   

of the force    is given by Eq. 5.7. 

 The force is offset from the center of mass so as to produce a moment about the 

center of mass that is opposite in sense to acceleration a. 

The usefulness of this approach for graphical force analysis will be 

demonstrated in the following section. It should be emphasized, however, that this 

approach is usually unnecessary in analytical solutions, where Eqs. 5.6A  to 5.6D. 

Including the original inertia force and inertia torque, can be applied directly 

 

 

 

 

 

 

 

 

 

 

 


