
SNS COLLEGE OF ENGINEERING
Kurumbapalayam(Po), Coimbatore – 641 107

Accredited by NAAC-UGC with ‘A’ Grade

Approved by AICTE, Recognized by UGC & Affiliated to Anna University, Chennai

Department of Artificial Intelligence and Data Science

Course Name: 23ITB201 Data structures and Algorithms

II Year / III semester

Unit IV –Tree ADT

Topic: Binary search Tree

10/23/2024 1/10SNSCE / AI&DS/AP/KALPANA C

10/23/2024 2/10SNSCE / AI&DS/AP/KALPANA C

Binary Search Tree

• Binary Search Tree is a node-based binary tree data structure which has the

following properties:

• The left subtree of a node contains only nodes with keys lesser than the node’s key.

• The right subtree of a node contains only nodes with keys greater than or equal to the

node’s key.

• The left and right subtree each must also be a binary search tree.

left_subtree (keys) < node (key) ≤ right_subtree (keys)

• Binary Search Tree is used to maintain sorted stream of data.

10/23/2024 3/10SNSCE / AI&DS/AP/KALPANA C

Binary Search Tree

Representation

• BST is a collection of nodes arranged in a way where they maintain BST properties.

We observe that the root node key (27) has all

less-valued keys on the left sub-tree and the

higher valued keys on the right sub-tree.

10/23/2024 4/10SNSCE / AI&DS/AP/KALPANA C

Binary Search Tree

Operations on a Binary Search Tree

The following operations are performed on a binary search tree.

1. Search

2. Insertion

3. Deletion

10/23/2024 5/10SNSCE / AI&DS/AP/KALPANA C

Binary Search Tree

Search operation in BST

Steps involved in Search operation:

• Compare the element with the root of the tree.

• If the item is matched then return the location of the node.

• Otherwise check if item is less than the element present on root, if so then move to

the left sub-tree.

• If not, then move to the right sub-tree.

• Repeat this procedure recursively until match found.

• If element is not found then return NULL.

10/23/2024 6/10SNSCE / AI&DS/AP/KALPANA C

Binary Search Tree

Search Item = 60

10/23/2024 7/10SNSCE / AI&DS/AP/KALPANA C

Binary Search Tree

Structure Definition of Binary Tree

struct node{

int key;

struct node *left, *right;

};

Search Routine

struct node* search(struct node* root, int key){

if (root == NULL || root->key == key)

return root;

if (root->key < key)

return search(root->right, key);

return search(root->left, key);

}

10/23/2024 8/10SNSCE / AI&DS/AP/KALPANA C

Insertion Operation in BST

Insertion Operation in BST

1.Allocate the memory for tree node.

2. Set the data part to the value and set the left and right pointer of tree, point to

NULL.

3.If the item to be inserted, will be the first element of the tree, then the left and right

of this node will point to NULL.

4.Else, check if the item is less than the root element of the tree, if this is true, then

recursively perform this operation with the left of the root.

5.If this is false, then perform this operation recursively with the right sub-tree of the

root.

10/23/2024 9/10SNSCE / AI&DS/AP/KALPANA C

Insertion Operation in BST

10/23/2024 10/10SNSCE / AI&DS/AP/KALPANA C

Insertion Operation in BST

Insertion Routine

struct node* insert(struct node* node, int key){

if (node == NULL) return newNode(key);

if (key < node->key)

node->left = insert(node->left, key);

else if (key > node->key)

node->right = insert(node->right, key);

return node;

}

10/23/2024 11/10SNSCE / AI&DS/AP/KALPANA C

Deletion operation in BST

Deletion operation in BST:

• Delete function is used to delete the specified node from a binary search tree.

• However, we must delete a node from a binary search tree in such a way, that the

property of binary search tree doesn't violate.

• There are three situations of deleting a node from binary search tree.

• The node to be deleted is a leaf node.

• The node to be deleted has only one child.

• The node to be deleted has two children.

10/23/2024 12/10SNSCE / AI&DS/AP/KALPANA C

Deletion operation in BST

The node to be deleted is a leaf node

• It is the simplest case, in this case, replace the leaf node with the NULL and simple

free the allocated space.

10/23/2024 13/10SNSCE / AI&DS/AP/KALPANA C

Deletion operation in BST

The node to be deleted has only one child.

• In this case, replace the node with its child and delete the child node, which now

contains the value which is to be deleted.

• Simply replace it with the NULL and free the allocated space.

10/23/2024 14/10SNSCE / AI&DS/AP/KALPANA C

Deletion operation in BST

The node to be deleted has only one child:

• In the following image, the node 12 is to be deleted. It has only one child. The

node will be replaced with its child node and the replaced node 12 (which is now leaf

node) will simply be deleted.

10/23/2024 15/10SNSCE / AI&DS/AP/KALPANA C

Deletion operation in BST

10/23/2024 16/10SNSCE / AI&DS/AP/KALPANA C

Deletion operation in BST

The node to be deleted has two children:

• The node which is to be deleted, is replaced with its in-order successor or

predecessor recursively until the node value (to be deleted) is placed on the leaf of

the tree.

• After the procedure, replace the node with NULL and free the allocated space.

The node to be deleted has two children.

In the following image, the node 50 is to be deleted which is the root node of the tree

10/23/2024 17/10SNSCE / AI&DS/AP/KALPANA C

Deletion operation in BST

The in-order traversal of the tree

6, 25, 30, 50, 52, 60, 70, 75.

Replace 50 with its in-order

successor 52.

10/23/2024 18/10SNSCE / AI&DS/AP/KALPANA C

Deletion operation in BST

10/23/2024 19/10SNSCE / AI&DS/AP/KALPANA C

Deletion operation in BST

10/23/2024 20/10SNSCE / AI&DS/AP/KALPANA C

Deletion operation in BST

10/23/2024 21/10SNSCE / AI&DS/AP/KALPANA C

Finding Minimum and Maximum Value in

BST
Finding Minimum and Maximum Value in BST

void minimum(struct node *root)

{

while(root != NULL && root->left != NULL)

{

root = root->left;

}

printf("\nSmallest value is %d\n", root->info);

}

void maximum(struct node *root)

{

while (root != NULL && root->right != NULL)

{

root = root->right;

}

printf("\nLargest value is %d", root->info);

}

