 Memory structures for paging can get huge using straight-forward
methods

— Consider a 32-bit logical address space as on modern
computers

— Page size of 4 KB (21?)
— Page table would have 1 million entries (232/ 212)

— If each entry Is 4 bytes -> 4 MB of physical address space /
memory for page table alone

e That amount of memory used to cost a lot

* Don’ t want to allocate that contiguously in main memory
 Hierarchical Paging
« Hashed Page Tables
* |nverted Page Tables

CS6401 / Unit 3/ Structure of Page table , 32 and 64 bit architecture 1/22

Hierarchical Page Tables

e Break up the logical address space into
multiple page tables

» A simple technique is a two-level page table
* \We then page the page table

CS6401 / Unit 3/ Structure of Page table , 32 and 64 bit architecture

2/22

(T TITUTIONS
www.snsgroups.com

Two-Level Page-Table Schem

7

,f,/”//// 100
500 N

500

*09 | L
[N

< 708

outer page 829
table TN =0

900

page of 929
page table

page table

memory

CS6401 / Unit 3/ Structure of Page table , 32 and 64 bit architecture 3/22

Two-Level Paging Example €&

 Alogical address (on 32-bit machine with 1K page size) is divided
Into:
— a page number consisting of 22 bits
— a page offset consisting of 10 bits _ o

. _Sl?cet e page table is paged, the page number is further divided
Into:
— a 12-bit page number
— a 10-bit page offset

: : page number page offset
o Thus, alogical address is as follows: D, 0, »

12 10 10

* where p, Is an index into the outer page table, and p, is the

displacement
« within the page of the inner page table Known as forward-

mapped page table

CS6401 / Unit 3/ Structure of Page table , 32 and 64 bit architecture 4/ 22

Address-Translation Scheme JE

logical address
Py | P2 | d

.

'

%

outer page d
table {

page of
page table

CS6401 / Unit 3/ Structure of Page table , 32 and 64 bit architecture 5/22

64-bit Logical Address Space &

WWW.SNsgroups. .com

e Even two-level paging scheme not sufficient
 |If page size is 4 KB (21?)
— Then page table has 252 entries
— If two level scheme, inner page tables could be 210 4-byte entries

— Address would look like outer page _ inner page | page offset
P P, d

42 10 12

— QOuter page table has 242entries or 244 bytes
— One solution is to add a 2" outer page table

— But in the following example the 2nd outer page table is still 234
bytes in size

* And possibly 4 memory access to get to one physical
memory location

CS6401 / Unit 3/ Structure of Page table , 32 and 64 bit architecture 6/22

Three-level Paging Scheme

outer page iInner page offset
P1 P2 d
42 10 12
2nd outer page , outerpage innerpage offset
P1 p: Ps d
P 10 10 12

CS6401 / Unit 3/ Structure of Page table , 32 and 64 bit architecture 7/22

« Common in address spaces > 32 bits
* The virtual page number is hashed into a page table

— This page table contains a chain of elements hashing to the same
location

» Each element contains (1) the virtual page number (2) the value of the
mapped page frame (3) a pointer to the next element

 Virtual page numbers are compared in this chain searching for a match
— If a match is found, the corresponding physical frame is extracted
 Variation for 64-bit addresses is clustered page tables

— Similar to hashed but each entry refers to several pages (such as
16) rather than 1

— Especially useful for sparse address spaces (where memory references
are non-contiguous and scattered)

CS6401 / Unit 3/ Structure of Page table , 32 and 64 bit architecture 8/22

logical address

Hashed Page Table

P

TUTIONS
WWW.snsgroups.com

hash table

physical
vL address
d r d M
A
— Lats| '], [eLrt],

CS6401 / Unit 3/ Structure of Page table , 32 and 64 bit architecture

physical
memory

9/22

Inverted Page Table

Rather than each process having a page table and keeping track of all
possible logical pages, track all physical pages

One entry for each real page of memory

Entry consists of the virtual address of the page stored in that real
memory location, with information about the process that owns that

page
Decreases memory needed to store each page table, but increases time
needed to search the table when a page reference occurs

Use hash table to limit the search to one — or at most a few — page-
table entries

— TLB can accelerate access
But how to implement shared memory?
— One mapping of a virtual address to the shared physical address

CS6401 / Unit 3/ Structure of Page table , 32 and 64 bit architecture 10/ 22

Inverted Page Table
Architecture

logical
address i

CPU > pd| p | d i

search l

physical
address

physical
memory

P

o

_1__/

pid

-

page table

CS6401 / Unit 3/ Structure of Page table , 32 and 64 bit architecture 11/22

Consider modern, 64-bit operating system example with tightly
Integrated HW

— Goals are efficiency, low overhead

Based on hashing, but more complex
Two hash tables

— One kernel and one for all user processes

— Each maps memory addresses from virtual to physical memory

— Each entry represents a contiguous area of mapped virtual memory,

* More efficient than having a separate hash-table entry for each
Page
— Each entry has base address and span (indicating the number of
pages the entry represents)

CS6401 / Unit 3/ Structure of Page table , 32 and 64 bit architecture 12 /22

Oracle SPARC Solaris (Cont.)&%

e TLB holds translation table entries (TTEs) for fast hardware lookups
— A cache of TTEs reside in a translation storage buffer (TSB)
* Includes an entry per recently accessed page
 Virtual address reference causes TLB search

— If miss, hardware walks the in-memory TSB looking for the TTE
corresponding to the address

e |f match found, the CPU copies the TSB entry into the TLB and
translation completes

* If no match found, kernel interrupted to search the hash table

— The kernel then creates a TTE from the appropriate hash table and
stores it in the TSB, Interrupt handler returns control to the MMU,
which completes the address translation.

CS6401 / Unit 3/ Structure of Page table , 32 and 64 bit architecture 13/22

Example: The Intel 32 and 64-
bit Architectures

Dominant industry chips
Pentium CPUs are 32-bit and called IA-32 architecture
Current Intel CPUs are 64-bit and called I1A-64 architecture

Many variations in the chips, cover the main ideas here

CS6401 / Unit 3/ Structure of Page table , 32 and 64 bit architecture 14 /22

Example: The Intel 1A-32
Architecture

o Supports both segmentation and segmentation with paging
— Each segment can be 4 GB
— Up to 16 K segments per process
— Divided into two partitions

e First partition of up to 8 K segments are private to
process (kept in local descriptor table (LDT))

e Second partition of up to 8K segments shared among all
processes (kept in global descriptor table (GDT))

CS6401 / Unit 3/ Structure of Page table , 32 and 64 bit architecture 15/ 22

Example: The Intel IA-32
Architecture (Cont.)

o CPU generates logical address
— Selector given to segmentation unit
 \WWhich produces linear addresses

s | g | p |
2

13 1

— Linear address given to paging unit
 \Which generates physical address in main memory
 Paging units form equivalent of MMU
» Pages sizes can be 4 KB or 4 MB

CS6401 / Unit 3/ Structure of Page table , 32 and 64 bit architecture 16/ 22

ixLogical to Physical Address
Translation in 1A-32

logical linear physical
ohl address) segmentation address' pagi.ng address) physical
unit unit memory
page number page offset
P1 P> d
10 10 12

CS6401 / Unit 3/ Structure of Page table , 32 and 64 bit architecture 17/ 22

Intel IA-32 Segmentation

logical address | selector offset

Y
descriptor table

—» segment descriptor —»{(+ je—

32-bit linear address

CS6401 / Unit 3/ Structure of Page table , 32 and 64 bit architecture 18/ 22

Intel 1A-32 Paging Architecture =

(logical address)

. page directory page table 1 offset 1
31 22 21 l 12 11 0
- Y
page 4-KB
4 table N page
page m
directory
L

CR3 —» X 4-MB

register page
T
. page directory offset |
31 22 21 0

CS6401 / Unit 3/ Structure of Page table , 32 and 64 bit architecture

TUTIONS
WWW.SNsgroups.com

19/22

Intel IA-32 Page Address
Extensions

www.snsgroups.com

32-bit address limits led Intel to create page address extension (PAE),
allowing 32-bit apps access to more than 4GB of memory space

Paging went to a 3-level scheme
Top two bits refer to a page directory pointer table
Page-directory and page-table entries moved to 64-bits in size

Net effect is increasing address space to 36 bits — 64GB of physical
memory

., Ppage dlrectory , Pbage table | offset
31(30 29 2120 1211 0
Y
] - | 4kB
page
CR3 N . _ _
register page directory page page
pointer table directory table

CS6401 / Unit 3/ Structure of Page table , 32 and 64 bit architecture 20/ 22

Intel x86-64

B Current generation Intel x86 architecture

B 64 bits is ginormous (> 16 exabytes)

B In practice only implement 48 bit addressing
e Pagesizesof4 KB, 2MB, 1GB
e Four levels of paging hierarchy

B Can also use PAE so virtual addresses are 48 bits and
physical addresses are 52 bits

page map page dlrectory page page
| unused | level4 | polntertable | dlrectory | table | offset

63 48 47 39 38 30 29 2120 1211 0

CS6401 / Unit 3/ Structure of Page table , 32 and 64 bit architecture 21/ 22

Dominant mobile platform chip

(Apple iIOS and Google Android devices
for example)

Example: ARM Architecture

32 hits

mModern, energy efficient, 32-bit CPU

outer page

inner page

offset

m4 KB and 16 KB pages

m]1 MB and 16 MB pages (termed
sections)

4-KB
or 16-KB

mOne-level paging for sections, two-

page

L,
level for smaller pages
mTwo levels of TLBs

e Outer level has two micro TLBs N

(one data, one instruction)

e Innerissingle main TLB

e Firstinner is checked, on miss
outers are checked, and on miss
page table walk performed by
CPU

1-MB

or 16-MB [¢—

section

CS6401 / Unit 3/ Structure of Page table , 32 and 64 bit architecture

22 /22

