
Structure of the Page Table
• Memory structures for paging can get huge using straight-forward

methods
– Consider a 32-bit logical address space as on modern

computers
– Page size of 4 KB (212)
– Page table would have 1 million entries (232 / 212)
– If each entry is 4 bytes -> 4 MB of physical address space /

memory for page table alone
• That amount of memory used to cost a lot
• Don’ t want to allocate that contiguously in main memory

• Hierarchical Paging
• Hashed Page Tables
• Inverted Page Tables

CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 1 / 22



Hierarchical Page Tables

• Break up the logical address space into
multiple page tables

• A simple technique is a two-level page table
• We then page the page table

CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 2 / 22



Two-Level Page-Table Scheme

CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 3 / 22



Two-Level Paging Example
• A logical address (on 32-bit machine with 1K page size) is divided

into:
– a page number consisting of 22 bits
– a page offset consisting of 10 bits

• Since the page table is paged, the page number is further divided
into:
– a 12-bit page number
– a 10-bit page offset

• Thus, a logical address is as follows:

• where p1 is an index into the outer page table, and p2 is the
displacement

• within the page of the inner page table Known as forward-
mapped page table

•
CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 4 / 22



Address-Translation Scheme

CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 5 / 22



64-bit Logical Address Space

• Even two-level paging scheme not sufficient
• If page size is 4 KB (212)

– Then page table has 252 entries
– If two level scheme, inner page tables could be 210 4-byte entries
– Address would look like

– Outer page table has 242 entries or 244 bytes
– One solution is to add a 2nd outer page table
– But in the following example the 2nd outer page table is still 234

bytes in size
• And possibly 4 memory access to get to one physical

memory location
CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 6 / 22



Three-level Paging Scheme

CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 7 / 22



Hashed Page Tables
• Common in address spaces > 32 bits
• The virtual page number is hashed into a page table

– This page table contains a chain of elements hashing to the same
location

• Each element contains (1) the virtual page number (2) the value of the
mapped page frame (3) a pointer to the next element

• Virtual page numbers are compared in this chain searching for a match
– If a match is found, the corresponding physical frame is extracted

• Variation for 64-bit addresses is clustered page tables
– Similar to hashed but each entry refers to several pages (such as

16) rather than 1
– Especially useful for sparse address spaces (where memory references

are non-contiguous and scattered)

CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 8 / 22



Hashed Page Table

CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 9 / 22



Inverted Page Table
• Rather than each process having a page table and keeping track of all

possible logical pages, track all physical pages
• One entry for each real page of memory
• Entry consists of the virtual address of the page stored in that real

memory location, with information about the process that owns that
page

• Decreases memory needed to store each page table, but increases time
needed to search the table when a page reference occurs

• Use hash table to limit the search to one — or at most a few — page-
table entries
– TLB can accelerate access

• But how to implement shared memory?
– One mapping of a virtual address to the shared physical address

CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 10 / 22



Inverted Page Table
Architecture

CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 11 / 22



Oracle SPARC Solaris
• Consider modern, 64-bit operating system example with tightly

integrated HW
– Goals are efficiency, low overhead

• Based on hashing, but more complex
• Two hash tables

– One kernel and one for all user processes
– Each maps memory addresses from virtual to physical memory
– Each entry represents a contiguous area of mapped virtual memory,

• More efficient than having a separate hash-table entry for each
page

– Each entry has base address and span (indicating the number of
pages the entry represents)

CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 12 / 22



Oracle SPARC Solaris (Cont.)
• TLB holds translation table entries (TTEs) for fast hardware lookups

– A cache of TTEs reside in a translation storage buffer (TSB)
• Includes an entry per recently accessed page

• Virtual address reference causes TLB search
– If miss, hardware walks the in-memory TSB looking for the TTE

corresponding to the address
• If match found, the CPU copies the TSB entry into the TLB and

translation completes
• If no match found, kernel interrupted to search the hash table

– The kernel then creates a TTE from the appropriate hash table and
stores it in the TSB, Interrupt handler returns control to the MMU,
which completes the address translation.

CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 13 / 22



Example: The Intel 32 and 64-
bit Architectures

• Dominant industry chips

• Pentium CPUs are 32-bit and called IA-32 architecture

• Current Intel CPUs are 64-bit and called IA-64 architecture

• Many variations in the chips, cover the main ideas here

CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 14 / 22



Example: The Intel IA-32
Architecture

• Supports both segmentation and segmentation with paging
– Each segment can be 4 GB
– Up to 16 K segments per process
– Divided into two partitions

• First partition of up to 8 K segments are private to
process (kept in local descriptor table (LDT))

• Second partition of up to 8K segments shared among all
processes (kept in global descriptor table (GDT))

CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 15 / 22



Example: The Intel IA-32
Architecture (Cont.)

• CPU generates logical address
– Selector given to segmentation unit

• Which produces linear addresses

– Linear address given to paging unit
• Which generates physical address in main memory
• Paging units form equivalent of MMU
• Pages sizes can be 4 KB or 4 MB

CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 16 / 22



Logical to Physical Address
Translation in IA-32

CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 17 / 22



Intel IA-32 Segmentation

CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 18 / 22



Intel IA-32 Paging Architecture

CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 19 / 22



Intel IA-32 Page Address
Extensions

 32-bit address limits led Intel to create page address extension (PAE),
allowing 32-bit apps access to more than 4GB of memory space
 Paging went to a 3-level scheme
 Top two bits refer to a page directory pointer table
 Page-directory and page-table entries moved to 64-bits in size
 Net effect is increasing address space to 36 bits – 64GB of physical

memory

CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 20 / 22



Intel x86-64
 Current generation Intel x86 architecture
 64 bits is ginormous (> 16 exabytes)
 In practice only implement 48 bit addressing

 Page sizes of 4 KB, 2 MB, 1 GB
 Four levels of paging hierarchy

 Can also use PAE so virtual addresses are 48 bits and
physical addresses are 52 bits

CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 21 / 22



Example: ARM Architecture
 Dominant mobile platform chip

(Apple iOS and Google Android devices
for example)
Modern, energy efficient, 32-bit CPU
4 KB and 16 KB pages
1 MB and 16 MB pages (termed
sections)
One-level paging for sections, two-
level for smaller pages
Two levels of TLBs
 Outer level has two micro TLBs

(one data, one instruction)
 Inner is single main TLB
 First inner is checked, on miss

outers are checked, and on miss
page table walk performed by
CPU

outer page inner page offset

4-KB
or 16-KB

page

1-MB
or 16-MB
section

32 bits

CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 22 / 22


