
Structure of the Page Table
• Memory structures for paging can get huge using straight-forward

methods
– Consider a 32-bit logical address space as on modern

computers
– Page size of 4 KB (212)
– Page table would have 1 million entries (232 / 212)
– If each entry is 4 bytes -> 4 MB of physical address space /

memory for page table alone
• That amount of memory used to cost a lot
• Don’ t want to allocate that contiguously in main memory

• Hierarchical Paging
• Hashed Page Tables
• Inverted Page Tables

CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 1 / 22



Hierarchical Page Tables

• Break up the logical address space into
multiple page tables

• A simple technique is a two-level page table
• We then page the page table

CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 2 / 22



Two-Level Page-Table Scheme

CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 3 / 22



Two-Level Paging Example
• A logical address (on 32-bit machine with 1K page size) is divided

into:
– a page number consisting of 22 bits
– a page offset consisting of 10 bits

• Since the page table is paged, the page number is further divided
into:
– a 12-bit page number
– a 10-bit page offset

• Thus, a logical address is as follows:

• where p1 is an index into the outer page table, and p2 is the
displacement

• within the page of the inner page table Known as forward-
mapped page table

•
CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 4 / 22



Address-Translation Scheme

CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 5 / 22



64-bit Logical Address Space

• Even two-level paging scheme not sufficient
• If page size is 4 KB (212)

– Then page table has 252 entries
– If two level scheme, inner page tables could be 210 4-byte entries
– Address would look like

– Outer page table has 242 entries or 244 bytes
– One solution is to add a 2nd outer page table
– But in the following example the 2nd outer page table is still 234

bytes in size
• And possibly 4 memory access to get to one physical

memory location
CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 6 / 22



Three-level Paging Scheme

CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 7 / 22



Hashed Page Tables
• Common in address spaces > 32 bits
• The virtual page number is hashed into a page table

– This page table contains a chain of elements hashing to the same
location

• Each element contains (1) the virtual page number (2) the value of the
mapped page frame (3) a pointer to the next element

• Virtual page numbers are compared in this chain searching for a match
– If a match is found, the corresponding physical frame is extracted

• Variation for 64-bit addresses is clustered page tables
– Similar to hashed but each entry refers to several pages (such as

16) rather than 1
– Especially useful for sparse address spaces (where memory references

are non-contiguous and scattered)

CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 8 / 22



Hashed Page Table

CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 9 / 22



Inverted Page Table
• Rather than each process having a page table and keeping track of all

possible logical pages, track all physical pages
• One entry for each real page of memory
• Entry consists of the virtual address of the page stored in that real

memory location, with information about the process that owns that
page

• Decreases memory needed to store each page table, but increases time
needed to search the table when a page reference occurs

• Use hash table to limit the search to one — or at most a few — page-
table entries
– TLB can accelerate access

• But how to implement shared memory?
– One mapping of a virtual address to the shared physical address

CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 10 / 22



Inverted Page Table
Architecture

CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 11 / 22



Oracle SPARC Solaris
• Consider modern, 64-bit operating system example with tightly

integrated HW
– Goals are efficiency, low overhead

• Based on hashing, but more complex
• Two hash tables

– One kernel and one for all user processes
– Each maps memory addresses from virtual to physical memory
– Each entry represents a contiguous area of mapped virtual memory,

• More efficient than having a separate hash-table entry for each
page

– Each entry has base address and span (indicating the number of
pages the entry represents)

CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 12 / 22



Oracle SPARC Solaris (Cont.)
• TLB holds translation table entries (TTEs) for fast hardware lookups

– A cache of TTEs reside in a translation storage buffer (TSB)
• Includes an entry per recently accessed page

• Virtual address reference causes TLB search
– If miss, hardware walks the in-memory TSB looking for the TTE

corresponding to the address
• If match found, the CPU copies the TSB entry into the TLB and

translation completes
• If no match found, kernel interrupted to search the hash table

– The kernel then creates a TTE from the appropriate hash table and
stores it in the TSB, Interrupt handler returns control to the MMU,
which completes the address translation.

CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 13 / 22



Example: The Intel 32 and 64-
bit Architectures

• Dominant industry chips

• Pentium CPUs are 32-bit and called IA-32 architecture

• Current Intel CPUs are 64-bit and called IA-64 architecture

• Many variations in the chips, cover the main ideas here

CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 14 / 22



Example: The Intel IA-32
Architecture

• Supports both segmentation and segmentation with paging
– Each segment can be 4 GB
– Up to 16 K segments per process
– Divided into two partitions

• First partition of up to 8 K segments are private to
process (kept in local descriptor table (LDT))

• Second partition of up to 8K segments shared among all
processes (kept in global descriptor table (GDT))

CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 15 / 22



Example: The Intel IA-32
Architecture (Cont.)

• CPU generates logical address
– Selector given to segmentation unit

• Which produces linear addresses

– Linear address given to paging unit
• Which generates physical address in main memory
• Paging units form equivalent of MMU
• Pages sizes can be 4 KB or 4 MB

CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 16 / 22



Logical to Physical Address
Translation in IA-32

CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 17 / 22



Intel IA-32 Segmentation

CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 18 / 22



Intel IA-32 Paging Architecture

CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 19 / 22



Intel IA-32 Page Address
Extensions

 32-bit address limits led Intel to create page address extension (PAE),
allowing 32-bit apps access to more than 4GB of memory space
 Paging went to a 3-level scheme
 Top two bits refer to a page directory pointer table
 Page-directory and page-table entries moved to 64-bits in size
 Net effect is increasing address space to 36 bits – 64GB of physical

memory

CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 20 / 22



Intel x86-64
 Current generation Intel x86 architecture
 64 bits is ginormous (> 16 exabytes)
 In practice only implement 48 bit addressing

 Page sizes of 4 KB, 2 MB, 1 GB
 Four levels of paging hierarchy

 Can also use PAE so virtual addresses are 48 bits and
physical addresses are 52 bits

CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 21 / 22



Example: ARM Architecture
 Dominant mobile platform chip

(Apple iOS and Google Android devices
for example)
Modern, energy efficient, 32-bit CPU
4 KB and 16 KB pages
1 MB and 16 MB pages (termed
sections)
One-level paging for sections, two-
level for smaller pages
Two levels of TLBs
 Outer level has two micro TLBs

(one data, one instruction)
 Inner is single main TLB
 First inner is checked, on miss

outers are checked, and on miss
page table walk performed by
CPU

outer page inner page offset

4-KB
or 16-KB

page

1-MB
or 16-MB
section

32 bits

CS6401 / Unit 3 / Structure of Page table , 32 and 64 bit architecture 22 / 22


