
Demand Paging
• Could bring entire process into

memory at load time
• Or bring a page into memory only

when it is needed
– Less I/O needed, no unnecessary

I/O
– Less memory needed
– Faster response
– More users

• Similar to paging system with swapping
(diagram on right)

• Page is needed  reference to it
– invalid reference  abort
– not-in-memory  bring to memory

• Lazy swapper – never swaps a page
into memory unless page will be
needed
– Swapper that deals with pages is a

pager
CS6401 / Unit 3/ Demand Paging 1 /17



Basic Concepts
• With swapping, pager guesses which pages will be used before

swapping out again
• Instead, pager brings in only those pages into memory
• How to determine that set of pages?

– Need new MMU functionality to implement demand paging
• If pages needed are already memory resident

– No difference from non demand-paging
• If page needed and not memory resident

– Need to detect and load the page into memory from
storage
• Without changing program behavior
• Without programmer needing to change code

CS6401 / Unit 3/ Demand Paging 2 /17



Valid-Invalid Bit
• With each page table entry a valid–invalid bit is associated

(v  in-memory – memory resident, i  not-in-memory)
• Initially valid–invalid bit is set to i on all entries
• Example of a page table snapshot:

During MMU address translation, if valid–invalid bit in page
table entry is i  page fault

CS6401 / Unit 3/ Demand Paging 3 /17



Page Table When Some Pages
Are Not in Main Memory

CS6401 / Unit 3/ Demand Paging 4 /17



Page Fault
• If there is a reference to a page, first reference to that page will

trap to operating system:
page fault
1. Operating system looks at another table to decide:

– Invalid reference  abort
– Just not in memory

2. Find free frame
3. Swap page into frame via scheduled disk operation
4. Reset tables to indicate page now in memory Set validation bit = v
5. Restart the instruction that caused the page fault

CS6401 / Unit 3/ Demand Paging 5 /17



Steps in Handling a Page Fault

CS6401 / Unit 3/ Demand Paging 6 /17



Aspects of Demand Paging
• Extreme case – start process with no pages in memory

– OS sets instruction pointer to first instruction of process, non-
memory-resident -> page fault

– And for every other process pages on first access
– Pure demand paging

• Actually, a given instruction could access multiple pages ->
multiple page faults
– Consider fetch and decode of instruction which adds 2 numbers

from memory and stores result back to memory
– Pain decreased because of locality of reference

• Hardware support needed for demand paging
– Page table with valid / invalid bit
– Secondary memory (swap device with swap space)
– Instruction restart

CS6401 / Unit 3/ Demand Paging 7 /17



Instruction Restart

• Consider an instruction that could access
several different locations

– block move

– auto increment/decrement location
– Restart the whole operation?

• What if source and destination overlap?

CS6401 / Unit 3/ Demand Paging 8 /17



Performance of Demand Paging
• Stages in Demand Paging (worse case)
1. Trap to the operating system
2. Save the user registers and process state
3. Determine that the interrupt was a page fault
4. Check that the page reference was legal and determine the

location of the page on the disk
5. Issue a read from the disk to a free frame:

1. Wait in a queue for this device until the read request is
serviced

2. Wait for the device seek and/or latency time
3. Begin the transfer of the page to a free frame

CS6401 / Unit 3/ Demand Paging 9 /17



Performance of Demand Paging

6. While waiting, allocate the CPU to some other user
7. Receive an interrupt from the disk I/O subsystem (I/O

completed)
8. Save the registers and process state for the other user
9. Determine that the interrupt was from the disk
10.Correct the page table and other tables to show page is now

in memory
11.Wait for the CPU to be allocated to this process again
12.Restore the user registers, process state, and new page table,

and then resume the interrupted instruction

CS6401 / Unit 3/ Demand Paging 10 /17



Performance of Demand Paging
(Cont.)

• Three major activities
– Service the interrupt – careful coding means just several

hundred instructions needed
– Read the page – lots of time
– Restart the process – again just a small amount of time

• Page Fault Rate 0  p  1
– if p = 0 no page faults
– if p = 1, every reference is a fault

• Effective Access Time (EAT)
EAT = (1 – p) x memory access + p (page fault overhead +
swap page out + swap page in )

CS6401 / Unit 3/ Demand Paging 11 /17



Demand Paging Example
• Memory access time = 200 nanoseconds
• Average page-fault service time = 8 milliseconds
• EAT = (1 – p) x 200 + p (8 milliseconds)
= (1 – p x 200 + p x 8,000,000
= 200 + p x 7,999,800
• If one access out of 1,000 causes a page fault, then

EAT = 8.2 microseconds.
This is a slowdown by a factor of 40!!
• If want performance degradation < 10 percent
– 220 > 200 + 7,999,800 x p
20 > 7,999,800 x p
– p < .0000025
– < one page fault in every 400,000 memory accesses

CS6401 / Unit 3/ Demand Paging 12 /17



Demand Paging Optimizations
• Swap space I/O faster than file system I/O even if on the same device

– Swap allocated in larger chunks, less management needed than file system
• Copy entire process image to swap space at process load time

– Then page in and out of swap space
– Used in older BSD Unix

• Demand page in from program binary on disk, but discard rather than paging out
when freeing frame
– Used in Solaris and current BSD
– Still need to write to swap space

• Pages not associated with a file (like stack and heap) – anonymous memory
• Pages modified in memory but not yet written back to the file system

• Mobile systems
– Typically don’t support swapping
– Instead, demand page from file system and reclaim read-only pages (such as

code)

CS6401 / Unit 3/ Demand Paging 13 /17



Copy-on-Write
• Copy-on-Write (COW) allows both parent and child processes to initially
share the same pages in memory

– If either process modifies a shared page, only then is the page copied
• COW allows more efficient process creation as only modified pages are

copied
• In general, free pages are allocated from a pool of zero-fill-on-demand
pages

– Pool should always have free frames for fast demand page execution
• Don’t want to have to free a frame as well as other processing on

page fault
– Why zero-out a page before allocating it?

• vfork() variation on fork() system call has parent suspend and
child using copy-on-write address space of parent
– Designed to have child call exec()
– Very efficient

CS6401 / Unit 3/ Demand Paging 14 /17



Before Process 1 Modifies Page C

CS6401 / Unit 3/ Demand Paging 15 /17



After Process 1
Modifies Page C

CS6401 / Unit 3/ Demand Paging 16 /17



What Happens if There is
no Free Frame?

• Used up by process pages
• Also in demand from the kernel, I/O buffers, etc
• How much to allocate to each?
• Page replacement – find some page in memory, but not

really in use, page it out
– Algorithm – terminate? swap out? replace the page?
– Performance – want an algorithm which will result in

minimum number of page faults
• Same page may be brought into memory several times

CS6401 / Unit 3/ Demand Paging 17 /17


