

TOPIC: 11 - SOLUTIONS OF LINEAR EQUATIONS OF SECOND AND HIGHER ORDER WITH

2. Solve:
$$(D^2 - 4D^2) z = \cos 2 \alpha \cos 3y$$

Solve: $(D^2 - 4D^2) z = \frac{1}{2} \left[\cos (2\alpha + 3y) + \cos (2\alpha - 3y) \right]$
The A.E. is $M^2 - 4 = 0$.
 $M^2 = 4$
 $M = \pm 2$.
 $C \cdot F = \int_1^1 (y + 2\alpha) + \frac{1}{2} (y - 2\alpha)$
 $D \cdot g = \frac{1}{D^2 - 4D^2} \cdot \frac{1}{2} \cos (2\alpha + 3y)$
 $D \cdot g = \frac{1}{D^2 - 4D^2} \cdot \frac{1}{2} \cos (2\alpha + 3y)$
 $D \cdot g = \frac{1}{D^2 - 4D^2} \cdot \frac{1}{2} \cos (2\alpha + 3y)$
 $D \cdot g = \frac{1}{D^2 - 4D^2} \cdot \frac{1}{2} \cos (2\alpha + 3y)$
 $D \cdot g = \frac{1}{D^2 - 4D^2} \cdot \frac{1}{2} \cos (2\alpha - 3y)$
 $D \cdot g = \frac{1}{D^2 - 4D^2} \cdot \frac{1}{2} \cos (2\alpha - 3y)$
 $D \cdot g = \frac{1}{D^2 - 4D^2} \cdot \frac{1}{D^2 - 3D^2} \cdot \frac{1}{D^2 - 3$

Type: CIV)

R. H. S =
$$\chi$$
 & y

$$(1+\chi)^{-1} = (1-\chi + \chi^{2} + \chi^{3} + \cdots)^{-1}$$

$$(1-\chi)^{-1} = (1+\chi + \chi^{2} + \chi^{3} + \cdots)^{-1}$$

1. Solve: $(D^{2} + 3DD^{1} + 2D^{12})Z = \chi + y$.

801:

The Δ · F is $M^{2} + 3M + 2 = 0$

$$(M+1) (M+2) = 0$$

$$M = -1, -2.$$

C. F = $\int_{1}^{1} (y-\chi) + \int_{2}^{1} (y-2\chi)$

P. $I = \frac{1}{D^{2} + 3DD^{1} + 2D^{12}}$

$$D^{2} \int_{1}^{1} + \frac{(3DD^{1} + 2D^{12})}{D^{2}} \int_{1}^{1} (\chi + y)$$

$$= \int_{1}^{2} \int_{1}^{1} + \frac{(3DD^{1} + 2D^{12})}{D^{2}} \int_{1}^{1} (\chi + y)$$

$$= \int_{1}^{2} \int_{1}^{1} - \frac{(3D^{1} + 2D^{12})}{D^{2}} \int_{1}^{1} (\chi + y)$$

$$= \int_{1}^{2} \int_{1}^{1} \chi + \frac{2D^{1}}{D^{2}} (\chi + y)$$

$$= \int_{1}^{2} \int_{1}^{1} \chi + \frac{2D^{1}}{D^{2}} (\chi + y)$$

SNSCE/ S&H/ UNIT 1/ PDE/1.11 - SOLUTION OF LINEAR ODE / D.Shila/AP/MATHS

$$P = \frac{1}{\rho^{2}} \left[2+y-3x \right]$$

$$= \frac{1}{\rho^{2}} \left[y-2x \right] + \frac{1}{\rho^{2}} \left[yx-\frac{x}{\rho^{2}} \right]$$

$$P = \frac{1}{\rho^{2}} \left[yx-\frac{x}{\rho^{2}} \right]$$

$$P = \frac{1}{\rho^{2}} \left[yx-\frac{x}{\rho^{2}} \right]$$

$$2 = \int_{1}^{1} \left(y-2x \right) + \int_{2}^{1} \left(y-2x \right) + \frac{y}{\rho^{2}} \left(-\frac{x}{\rho^{2}} \right)$$

$$2 = \int_{1}^{1} \left(y-2x \right) + \int_{2}^{1} \left(y-2x \right) + \frac{y}{\rho^{2}} \left(-\frac{x}{\rho^{2}} \right)$$

$$2 = \int_{1}^{1} \left(y-2x \right) + \int_{2}^{1} \left(y-2x \right) + \frac{y}{\rho^{2}} \left(y-2x \right)$$

$$2 = \int_{1}^{1} \left(y-2x \right) + \int_{2}^{1} \left(y-2x \right) + \int_{2}^{1} \left(y+2x \right)$$

$$2 = \int_{1}^{1} \left(y-2x \right) + \int_{2}^{1} \left(y+2x \right) + \int_{2}^{1} \left(y+2x \right)$$

$$4 = \int_{1}^{1} \left(y-2x \right) + \int_{1}^{1} \left(x-2x \right) + \int_{1}^{1}$$

$$P.I = \frac{1}{b^{2}} \left(\frac{\chi^{2}y - \frac{\chi^{2}}{D}}{D} \right)$$

$$= \frac{1}{b^{2}} \left(\frac{\chi^{2}y - \frac{\chi^{3}}{3}}{2} \right)$$

$$= \frac{1}{b} \left(\frac{\chi^{3}}{3} y - \frac{\chi^{4}}{12} \right)$$

$$= \frac{\chi^{4}}{12} y - \frac{\chi^{5}}{60}$$

$$= \frac{1}{12} \left(\frac{y - 3\chi}{2} \right) + \frac{1}{12} \left(\frac{y + 2\chi}{2} \right)$$

$$= \frac{\chi^{4}}{12} y - \frac{\chi^{5}}{60}$$