SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641 107

An Autonomous Institution

Accredited by NBA - AICTE and Accredited by NAAC - UGC with ‘A’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

ARM-Instruction Set(Part 2)

Dr.G.Arthy

Assistant Professor
Department of EEE

SNS College of Engineering

10/28/2024 ARM:-Instruction Set/Dr.G.Arthy /EEE/SNSCE

— .
S
LISTITUTIONS

-

I .

10/28/2024

Classification of Instruction

Data processing instructions.
Branch instructions.

Load store instructions.

Software interrupt instructions.
Program status register instructions.
Loading constants.

Conditional Execution.

ARM-Instruction Set/Dr.G.Arthy /EEE/SNSCE

rIrorons

10/28/2024

Branch Instructions

» A branch instruction changes the flow of execution
or is used to call a routine.

« This type of instruction allows programs to have
subroutines, if-then-else structures, and loops.

» The change of execution flow forces the program
counter pc to point to a new address.

« The ARMvV5E instruction set includes four different
branch instructions

Syntax: BL{<cond>} label

B{<cond>} label
BX{<cond>} Rm
BLX{<cond>} label | R

ARM-Instruction Set/Dr.G.Arthy /EEE/SNSCE

~»

a_.

FIrorionss

a_.

~»

FIrorionss

B | branch pc =label

BL | branch with link pc =label
lr=address of the next instruction after the BL

BX | branch exchange pc=Rm & Oxfffffffe, T=Rm & 1

BLX | branch exchange with link | pc =label, T=1
pc=Rm & Oxfffffffe, T=Rm & 1
Ir=address of the next instruction after the BLX

o The address label is stored in the instruction as a
signed pc-relative offset and must be within
approximately 32 MB of the branch instruction.

o T refers to the Thumb bit in the cpsr. When
instructions set T, the ARM switches to Thumb state.

10/28/2024 ARM-Instruction Set/Dr.G.Arthy /EEE/SNSCE 4

Example

o This example shows a forward and backward branch. Because these
loops are address specific, we do not include the pre- and post-
conditions.

o The forward branch skips three instructions. The backward branch
creates an infinite loop.

FIrorionss

B forward

ADD rl, r2, #4

ADD rO, r6&, #2 The branch labels are placed at the
ADD r3, r7, #4 Dbeginning In this example, forward

forward and backward are the labels.
SUB rl, r2, #4 of the line and are used to mark an
address
backward that can be used later by the

ADD rl, r2, #4 assembler to calculate the branch
SUB rl, r2, #4 offset.

ADD 4, r&é6, r7
B backward

10/28/2024 ARM-Instruction Set/Dr.G.Arthy /EEE/SNSCE 5

10/28/2024

O O O O

Load-Store Instructions

Load-store instructions transfer data between memory and processor
registers.

There are three types of load-store instructions:
Single-Register Transfer

Multiple-Register Transfer

Swap Instruction

ARM-Instruction Set/Dr.G.Arthy /EEE/SNSCE

FIrorionss

a_.

Single-Register Transfer >

FIrorionss

» These instructions are used for moving a single data
item 1n and out of a register.

» The data types supported are signed and unsigned
words (32-bit), half words (16-bit), and bytes.

» Various load-store single-register transfer instructions
are

* Syntax:
<LDR | STR>{< cond >}{B} Rd,addressing1
LDR{< cond >}SB|H | SH Rd, addressing2
STR{ <cond >} H Rd, addressing2

10/28/2024 ARM-Instruction Set/Dr.G.Arthy /EEE/SNSCE 7

10/28/2024

LDR | load word into a register Rd <- mem32|[address|
STR save byte or word from a register | Rd -> mem32[address]
LDRB | load byte into a register Rd <- mem8[address|
STRB | save byte from a register Rd -> mem8[address|
LDRH load halfword into a register Rd <- mem1l16|address|
STRH save halfword into a register Rd -> mem16[/address]
LDRSB | load signed byte into a register Rd <- SignExtend
(mem8[address])
LDRSH | load signed halfword into a register | Rd <- SignExtend

(meml6|address])

ARM-Instruction Set/Dr.G.Arthy /EEE/SNSCE

>

a_.

rIrorons

10/28/2024

; load register rO with the contents of the memory address
;pointed to by register rl.

LDR r0, [r1] ; = LDR rO, [r1, #0]

; store the contents of register rO to the memory address
;pointed to by register r1.

STR 0, [r1] ; = STR 10, [r1, #0]

The first instruction loads a word from the address stored in register
r1 and places it into register r0. The second instruction goes the other
way by storing the contents of register r0 to the address contained
register rl1. The offset from register r1 is zero. Register r1 is called ‘:-28
base address register.

ARM-Instruction Set/Dr.G.Arthy /EEE/SNSCE

~»

a_.

FIrorionss

10/28/2024

Single-register load-store addressing, word or unsigned byte.

Addressing' mode and index method

Addressing' syntax

Preindex with immediate offset

Preindex with register offset

Preindex with scaled register offset
Preindex writeback with immediate offset
Preindex writeback with register offset

Preindex writeback with scaled register offset

Immediate postindexed
Register postindex
Scaled register postindex

[Rn, #s/-offset _12]

[R"’ +/’mn]

[Rn, +/-Rm, shift #shift_imm]
[Rn, #+/-offset_12]1

[Rn' "’/‘m“]l

[Rn, +/-Rm, shift #shift_imm]!
[Rn], #+/-offset 12

[R"]’ */-RTB

[Rn], +/-Rm, shift #shift_imm

Single-register load-store addressing, halfword, signed halfword, signed byte, and

doubleword.

Addressing’ mode and index method Addressing® syntax
Preindex immediate offset [Rn, #+/-offset 8]
Preindex register offset [Rn, +/-Rm]

Preindex writeback immediate offset [Rn, #+/-offset 8]!
Preindex writeback register offset (Rn, +/-Rm]!
Immediate postindexed (Rn], #+/-offset 8
Register postindexed [Rn], +/-Rm

ARM-Instruction Set/Dr.G.Arthy /EEE/SNSCE

Trorion’s

10

- S
~»

FIrorionss

» LDR and STR instructions can load and store data on
a boundary alignment that is the same as the data
type size being loaded or stored.

» For example, LDR can only load 32-bit words on a
memory address that 1s a multiple of four bytes—O0, 4,
8, and so on.

» This example shows a load from a memory address
contained in register r1, followed by a store back to the
same address In memory.

10/28/2024 ARM-Instruction Set/Dr.G.Arthy /EEE/SNSCE 11

10/28/2024

SLLSTITITIONS

o The first instruction loads a word from the address
stored in reqister r1 and places it into

reqister r0.

The second instruction goes the other way by storing

the contents of register r0 to the address contained in
register r1.

The offset from register r1 is zero. Register r1 is called
the base address register.

ARM-Instruction Set/Dr.G.Arthy /EEE/SNSCE 12

Swap Instruction
rIrorion’s

The swap instruction is a special case of a load-store instruction. It swaps
the contents of memory with the contents of a register. This instruction is
an atomic operation—it reads and writes a location in the same bus
operation, preventing any other instruction from reading or writing to that
location until it completes.

Syntax: SWP{B}{<cond>} Rd,Rm,[Rn]

SWP swap a word between memory and a register | tmp =mem32[Rn]
mem32[Rn| =Rm

Rd=tmp

SWPB | swap a byte between memory and a register | tmp =mem8[Rn]|
mem8[Rn| =Rm
Rd=tmp

10/28/2024 ARM-Instruction Set/Dr.G.Arthy /EEE/SNSCE 13

The swap instruction loads a word from memory into register rO and
overwrites the memory with register r1.

PRE mem32[0x9000] = 0x12345678

r0 = 0x00000000

r1 = 0x11112222

r2 = 0x00009000

SWP r0, r1, [r2]

POST mem32[0x9000] = 0x11112222

r0 = 0x12345678

r1i = Ox11112222

r2 = 0x00009000
This instruction is particularly useful when implementing
semaphores and mutual
exclusion in an operating system. You can see from the
syntax that this instruction can also

have a byte size qualifier B, so this instruction allows for
both a word and a byte swap.

INSTIOIPNE

10/28/2024

ARM-Instruction Set/Dr.G.Arthy /EEE/SNSCE 14

a_.

SOFTWARE INTERRUPT INSTRUCTION -

o A software interrupt instruction (SWI) causes a
software interrupt exception, which provides a
mechanism for applications to call operating system
routines.

o Syntax: SWI{<cond>} SWI_number

FIrorionss

SWI | software interrupt | Ir_swe=address of instruction following the SWI
SPST_SYC= (ST

pc= vectors + 0x8

gpsr mode = SVC

gpsr 1= 1 (mask IRQ interrupts)

10/28/2024 ARM-Instruction Set/Dr.G.Arthy /EEE/SNSCE 15

~»

o When the processor executes an SWI instruction, it
sets the program counter pc to the offset 0x8 in the
vector table.

o The 1nstruction also forces the processor mode to SVC,
which allows an operating system routine to be called
in a privileged mode.

o Each SWI instruction has an associated SWI number,
which 1s used to represent a particular function call or
feature.

10/28/2024 ARM-Instruction Set/Dr.G.Arthy /EEE/SNSCE 16

[S

FIrorionss

~»
EXAMPLE SITU IS
» Here we have a simple example of an SWI call with
SWI number 0x123456, used by ARM toolkits as a
debugging SWI. Typically the SWI instruction 1s
executed 1n user mode.

« PRE cpsr =nzcVqift_USER
pc = 0x00008000
Ir = OxO003fffff; Ir = r14
r0 =0x12

0x00008000 SWI 0x123456

« POST cpsr =nzcVqlft_SVC
spsr = nzcVqift_USER
pc = 0x00000008
Ir = 0x00008004
r0 =0x12

10/28/2024 ARM-Instruction Set/Dr.G.Arthy /EEE/SNSCE 17

[S

o Since SWI instructions are used to call operating system ~»
routines, you need some form of parameter passing. This is
achieved using registers. In this example, register r0 is
used to pass the parameter 0x12.

FIrorionss

o The return values are also passed back via registers. Code
called the SWI handler is required to process the SWI call.
The handler obtains the SWI number using the address of
the executed instruction, which is calculated from the link
register [r.

o The SWI number i1s determined by
SWI_Number = <SWI instruction> AND NOT(0xff000000)

o Here the SWI instruction is the actual 32-bit SWI
instruction executed by the processor.

10/28/2024 ARM-Instruction Set/Dr.G.Arthy /EEE/SNSCE 18

- S
~»

FIrorionss

Program Status Register Instructions

» The ARM instruction set provides two instructions to
directly control a program status register (psr).

« The MRS instruction transfers the contents of either the
cpsr or spsr into a register; in the reverse direction, the
MSR instruction transfers the contents of a register into
the cpsr or spsr. Together these instructions are used to
read and write the cpsr and spsr.

« In the syntax you can see a label called fields. This can
be any combination of control (c), extension (x), status
(s), and flags (f). These fields relate to particular byte
regions in a pstr.

« The c field controls the interrupt masks, Thumb state,
and processor mode.

10/28/2024 ARM-Instruction Set/Dr.G.Arthy /EEE/SNSCE 19

10/28/2024

SYNTAX:
MRS{<COND>} RD,<CPSR | SPSR>
MSR{<COND>} <CPSR
MSR{<COND>} <CPSR

SPSR>_<FIELDS>,RM
SPSR>_ <FIELDS>#IMMEDIATE

psr byte fields
Fields : Flags [24:31) . Status [16:23] . eXtension [8:15] " Control [0:7] :
I i H 1
Bit 31302928 7654 0
N|Z|ClV I|\FIT| Mode
MRS | copy program status register to a general-purpose register Rd = psr

MSR | move a general-purpose register to a program status register

psrifield] = Rm

MSR | move an immediate value to a program status register

psrifield] = immediate

ARM-Instruction Set/Dr.G.Arthy /EEE/SNSCE

rIrorionss

20

10/28/2024

Loading constants

o You might have noticed that there is no ARM
instruction to move a 32-bit constant into a
register. Since ARM instructions are 32 bits in
size, they obviously cannot specify a general 32-bit
constant.

o To aid programming there are two pseudo
istructions to move a 32-bit value into a register

LDR | load constant pseudoinstruction Rd = 32-bit constant

ADR | load address pseudoinstruction Rd = 32-bit relative address

ARM-Instruction Set/Dr.G.Arthy /EEE/SNSCE

FIrorionss

21

The first pseudo instruction writes a 32 bit constant to
a register using whatever instructions are available. It
defaults to a memory read if the constant cannot be
encoded using other instructions.

FIHTITIonsS

The second pseudo instruction writes a relative
address into a register, which will be encoded using a
pc-relative expression.

Syntax:
LDR Rd, =constant
ADR Rd, label

10/28/2024 ARM-Instruction Set/Dr.G.Arthy /EEE/SNSCE 22

Arm Instruction Set Advantages AIMEL

]

FIrorionss

« All instructions are 32 bits long.
* Most instructions are executed in one single cycle.
« Every instructions can be conditionally executed.

A load/store architecture

— Data processing instructions act only on registers
« Three operand format
« Combined ALU and shifter for high speed bit manipulation

— Specific memory access instructions with powerful auto-indexing
addressing modes

— 32 bit ,16 bit and 8 bit data types
— Flexible multiple register load and store instructions

10/28/2024 ARM-Instruction Set/Dr.G.Arthy /EEE/SNSCE 23

ASSESSMENT

NSO

1) How many modes of operation is available in ARM7?

2)How many registers are available in ARM7?

o - E’OBE LOKEE S ';’.n

M
SUCCes

......

10/28/2024 ARM-Instruction Set/Dr.G.Arthy /EEE/SNSCE 24

FIHTITIonsS

10/28/2024 ARM-Instruction Set/Dr.G.Arthy /EEE/SNSCE 25

