SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641 107

An Autonomous Institution

Accredited by NBA - AICTE and Accredited by NAAC - UGC with ‘A’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

ARM-Thumb Instruction Set

Dr.G.Arthy

Assistant Professor
Department of EEE

SNS College of Engineering

10/28/2024 ARM-Thumb Instruction Set/Dr.G.Arthy /EEE/SNSCE

LISTITITTON S

f1/x

Thumb Instruction Set Advantages A_IlllEl w1 $

FIrorionss

« All instructions are exactly 16 bits long to improve code density
over other 32-bit architectures

« The Thumb architecture still uses a 32-bit core, with:
— 32-bit address space
— 32-bit registers
— 32-bit shifter and ALU
— 32-bit memory transfer

« QGives....
— Long branch range
— Powerful arithmetic operations
— Large address space

10/28/2024 ARM-Thumb Instruction Set/Dr.G.Arthy /EEE/SNSCE 2/12

K

How Does Thumb Work ? AIMEL

T TIONS

« The Thumb instruction set is a subset of the ARM
instruction set, optimized for code density.

« Almost every Thumb instructions have an ARM instructions
equivalent:
— ADD Rd, #0Offset8 <> ADDS Rd, Rd, #Offset8

* Inline expansion of Thumb Instruction to ARM Instruction
— Real time decompression
— Thumb instructions are not actually executed on the core

» The core needs to know whether it is reading Thumb
instructions or ARM instructions.

— Core has two execution states - ARM and Thumb
— Core does not have a mixed 16 and 32 bit instruction set.

10/28/2024 ARM-Thumb Instruction Set/Dr.G.Arthy /EEE/SNSCE 3/12

F

Thumb Instruction Set Decompression AllNE

=

rIrorons

THUMB: ADD Rd #Constant

15 0
001 10 Constant
Always Major Minor Destination & Zero extended
condition opcode opcode source register constant
31 | 28 24 |21 20 19>\ 16 15\ 12 /\ 0
1110 001 01001 0000 Constant
| opt1+op3

ARM: ADDS Rd, Rd, #Constant

10/28/2024 ARM-Thumb Instruction Set/Dr.G.Arthy /EEE/SNSCE 4/12

Branch Instructions AIMEL

L}

FIrorionss

« Thumb supports four types of branch instruction:

— an unconditional branch that allows a forward or backward branch of
up to 2Kbytes

— a conditional branch to allow forward and backward branches of up
to 256 bytes

— a branch with link is supported with a pair of instructions that allow
forward and backwards branches of up to 4Mbytes

— a branch and exchange instruction branches to an address in a
register and optionally switches to ARM code execution

« List of branch instructions

- B conditional branch
- B unconditional branch
- BL Branch with link

- BX Branch and exchange instruction set

10/28/2024 ARM-Thumb Instruction Set/Dr.G.Arthy /EEE/SNSCE 5/12

Data Processing Instructions AIMEL

Lo}

FIrorionss

« Thumb data-processing instructions are a subset of the ARM
data-processing instructions

— All Thumb data-processing instructions set the condition codes

+ List of data-processing instructions

— ADC, Add with Carry - MOV, Move

- ADD, Add - MUL, Multiply

— AND, Logical AND - MVN, Move NOT

— ASR, Arithmetic shift right - NEG, Negate

- BIC, Bit clear — ORR, Logical OR

— CMN, Compare negative — ROR, Rotate Right

— CMP, Compare — SBC, Subtract with Carry
— EOR, Exclusive OR — SUB, Subtract

— LSL, Logical shift left — TST, Test

— LSR, Logical shift right

10/28/2024 ARM-Thumb Instruction Set/Dr.G.Arthy /EEE/SNSCE 6/12

[S

FIrorionss

Load and Store Register Instructions A_lIIIEI. ~

« Thumb supports 8 types of load and store register
instructions

« List of load and store register instructions

— LDR Load word

- LDRB Load unsigned byte

— LDRH Load unsigned halfword
— LDRSB Load signed byte

— LDRSH Load signed halfword

- STR Store word

- STRB Store byte

— STRH Store halfword

10/28/2024 ARM-Thumb Instruction Set/Dr.G.Arthy /EEE/SNSCE 7/12

Load and Store Multiple Instructions AlmEL

FIHTITIonsS

 Thumb supports four types of load and store multiple
instructions

« Two (a load and store) are designed to support block copy

« The other two instructions (called PUSH and POP)
implement a full descending stack, and the stack pointer is
used as the base register

» List of load and store multiple instructions

- LDM Load multiple
- POP Pop multiple
- PUSH Push multiple

- STM Store multiple

10/28/2024 ARM-Thumb Instruction Set/Dr.G.Arthy /EEE/SNSCE 8/12

a_.

Thumb Register Usage Q

rIrorons

o In thumb state we can not access all registers
directly.

o Summary of Thumb register usage.

Registers Access

ri—r7 fully accessible

r8—ri2 only accessible by MOV, ADD, and CMP
ri3sp limited accessibility

ridlr limited accessibility

rl5 pe limited accessibility

cpst only indirect access

spsr No access

10/28/2024 ARM-Thumb Instruction Set/Dr.G.Arthy /EEE/SNSCE 9/12

ARM-Thumb Interworking

o ARM-Thumb interworking is the name given to the
method of linking ARM and Thumb code together
for both assembly and C/C++. It handles the
transition between the two states.

o To call a Thumb routine from an ARM routine, the
core has to change state. This state change is
shown in the T bit of the cpsr.

o The BX and BLX branch instructions cause a switch
between ARM and Thumb state while branching to
a routine.

10/28/2024 ARM-Thumb Instruction Set/Dr.G.Arthy /EEE/SNSCE

10/ 12

- a_.
B

o Syntax:
BX Rm
BLX Rm | label

ax Thumb version branch exchange pe=Rn & QxTIrIffre
I'= Rkni0]

+

SLX Thumb version of the branch exchange ¥r = (instruction address after the BLX) + |
with limk pc=labd, T =~ 0
pc=Rm & OXTTII7178, T= Kme|0]

10/28/2024 ARM-Thumb Instruction Set/Dr.G.Arthy /EEE/SNSCE 11/12

+ ARM code

CODE32

LOR r0, =thumbCode+l
MOV Ir, pc

BX r0

; continue here
s Thumb code

CODELG
thumbCode

ADD rl, #1

BX Ir

rIrorons

; word aligned
: +1 to enter Thumb state
: sat the return address

: branch to Thumb code & mode

; halfword aligned

. return to ARM code & state

10/28/2024 ARM-Thumb Instruction Set/Dr.G.Arthy /EEE/SNSCE 12 /12

[S

~»

FIrorionss

Data Processing Instructions

o The data processing instructions manipulate data
within registers. They include move instructions,
arithmetic instructions, shifts, logical instructions,
comparison instructions, and multiply instructions.
The Thumb data processing instructions are a
subset of the ARM data processing instructions.

10/28/2024 ARM-Thumb Instruction Set/Dr.G.Arthy /EEE/SNSCE 13 /12

o Syntax:

5 <ADC|ADD|AND|BIC|EOR|MOV|MUL|MVN|NEG|O
RR|SBC|SUB> Rd, Rm

o <ADD|ASRI|LSL|LSR|ROR|SUB> Rd, Rn
#immediate

o <ADD|MOV|SUB> Rd,#immediate
o <ADD|SUB> Rd,Rn,Rm

o ADD Rd,pc,#immediate

o ADD Rd,sp,#immediate

o <ADDI|SUB> sp, #immediate

o <ASR|LSL|LSR|ROR> Rd,Rs

o <CMN|CMP|TST> Rn,Rm

o CMP Rn,#immediate

o MOV Rd,Rn

FIHTITIonsS

10/28/2024 ARM-Thumb Instruction Set/Dr.G.Arthy /EEE/SNSCE 14 /12

ADC | add two 32-bit values and carry | Rd = Rd + Rm + C flag

ADD | add two 32-bit values Rd = Rn + immediate Iryrionss
Rd = Rd + immediate

Rd = Rd + Rm

Rd=Rd + Rm

Rd = (pc & OxfTfftfic) + (immediate « 2)
Rd = sp + (immediate & 2)

sp =sp + (immediate < 2)

This example shows a simple Thumb ADD instruction. It takes two low
registers r1 and r2 and adds them together. The result is then placed
into register r0, overwriting the original contents. The cpsr is also
updated.

PRE cpsr = nzcvlFT_SVC
r1 = 0x80000000

r2 = 0x10000000

ADD r0, r1, r2

POST r0 = 0x90000000
cpsr = NzcviFT_SVC

10/28/2024 ARM-Thumb Instruction Set/Dr.G.Arthy /EEE/SNSCE 15/12

Stacks

* A stack is an area of memory which grows as new data is “pushed” onto
the “top” of it, and shrinks as data is “popped” off the top.

* Two pointers define the current limits of the stack.

* A base pointer
— used to point to the “bottom™ of the stack (the first location).

* A stack pointer
— used to point the current “top™ of the stack.

PUSH
(1,23} POP
. FE*
SP *é Result of
— SP—>I - S— pop = 3
. M — T—
= BASE—> BASE—>

BASE >

ARM-Thumb Instruction Set/Dr.G.Arthy /EEE/SNSCE

10/28/2024

FIrorionss

16/ 12

10/28/2024

Stack Operation

Traditionally, a stack grows down in memory, with the last “pushed”
value at the lowest address. The ARM also supports ascending stacks,
where the stack structure grows up through memory.

The value of the stack pointer can either:
* Point to the last occupied address (Full stack)
— and so needs pre-decrementing (ie before the push)
* Point to the next occupied address (Empty stack)
— and so needs post-decrementing (ie after the push)
The stack type to be used is given by the postfix to the instruction:
« STMFD / LDMEFD : Full Descending stack
 STMFA / LDMFA : Full Ascending stack.
« STMED / LDMED : Empty Descending stack
« STMEA / LDMEA : Empty Ascending stack
Note: ARM Compiler will alwavs use a Full descending stack.

ARM-Thumb Instruction Set/Dr.G.Arthy /EEE/SNSCE

~»

[S

FIrorionss

17/ 12

Stack Examples

STMED sp!,

STMFD sp!,

STMFA sp!,
{x0,rl,xr3-r5}

.........
........

Old SP— Old SP—

..........
...........
£ XL LA
..........

..........
Y Y Y Y Y Y Y YA
.........
Y Y Y Y Y Y Y YA

..............
..............
............

£ LLKXKLAAA
.........

.........

........
v Y Y Y Y YNy
..........
...........
........

........
...........
.........
.........

10/28/2024

ARM-Thumb Instruction Set/Dr.G.Arthy /EEE/SNSCE

STMEA sp!,
{r0,rl,r3-r5}

........
.....

L L L LLLKA
.........

A e e o
L AALAALKXLALA
D DD DD
..........

...............
L L L LLL LA

Y Y Y Y Y Y Y
'SPV IVOY.

xxxxxxxxx

........

44444444444

.........
.............

........

L LKA AKXA
...........

rrorionss

0x418

0x400

0x3e8

18/ 12

[S

Stacks and Subroutines >

FIrorionss

* One use of stacks is to create temporary register workspace for
subroutines. Any registers that are needed can be pushed onto the stack
at the start of the subroutine and popped off again at the end so as to
restore them before return to the caller :

STMFD sp!, {rO-rl2, 1lr} ; stack all registers
........ ; and the return address
LDMFD sp!, {r0-rl2, pc} ; load all the registers

; and return automatically

* See the chapter on the ARM Procedure Call Standard in the SDT
Reference Manual for further details of register usage within
subroutines.

* If the pop instruction also had the ‘S’ bit set (using ‘*’) then the transfer
of the PC when in a priviledged mode would also cause the SPSR to be
copied into the CPSR (see exception handling module).

10/28/2024 ARM-Thumb Instruction Set/Dr.G.Arthy /EEE/SNSCE 19/12

~»

Direct functionality of
Block Data Transfer

* When LDM / STM are not being used to implement stacks, it is clearer
to specify exactly what functionality of the instruction is:

* 1.e. specify whether to increment / decrement the base pointer, before or
after the memory access.

* In order to do this, LDM / STM support a further syntax in addition to
the stack one:

» STMIA / LDMIA : Increment After

» STMIB / LDMIB : Increment Before

« STMDA /LDMDA : Decrement After
« STMDB / LDMDB : Decrement Before

10/28/2024 ARM-Thumb Instruction Set/Dr.G.Arthy /EEE/SNSCE 20/12

[S

FIrorionss

Example: Block Copy i

* Copy a block of memory, which is an exact multiple of 12 words long
from the location pointed to by r12 to the location pointed to by r13. r14
points to the end of block to be copied.

; rl2 points to the start of the source data
; rld points to the end of the source data

; rl3 points to the start of the destination data IRRBERN:

.......
.......
.......

loop LDMIA rl12!, {r0O-rll} ; load 48 bytes | TS
STMIA r1l3!, {r0O-rll} ; and store them S .
IncreasingM
CMP rl2, rld ; check for the end emory
BNE loop ; and loop until done
1 e

* This loop transfers 48 bytes in 31 cycles
* Over 50 Mbytes/sec at 33 MHz

10/28/2024 ARM-Thumb Instruction Set/Dr.G.Arthy /EEE/SNSCE 21/12

[S

Swap and Swap Byte =
Instructions

* Atomic operation of a memory read followed by a memory write
which moves byte or word quantities between registers and
memory.

* Syntax:
« SWP{<cond>}{B} Rd, Rm, [Rn]

Rn Q RTRTPY - m @

...... temp
Y
'Memor;/ \@
rC1 Rd [

* Thus td'implement an actual swap of contents make Rd = Rm.

* The compiler cannot produce this instruction. ——

10/28/2024 ARM-Thumb Instruction Set/Dr.G.Arthy /EEE/SNSCE 22 /12

Swap and Swap Byte R,
Instructions

* Atomic operation of a memory read followed by a memory write
which moves byte or word quantities between registers and
memory.

* Syntax:
« SWP{<cond>}{B} Rd, Rm, [Rn]

...... temp
-4
'Memor'y \@
R Rd 1

* Thus tH‘implement an actual swap of contents make Rd = Rm.

* The compiler cannot produce this instruction. e

10/28/2024 ARM-Thumb Instruction Set/Dr.G.Arthy /EEE/SNSCE 23 /12

L [S

Software Interrupt (SWI) T

3 28 27 24 23 0
| 1 | I U 0§ 0 I i e Mt °r 1 1 1 1° 1ol
I 1 1 1

Cond Comment field (ignored by Processor)

Condition Field

* In effect, a SWI is a user-defined instruction.

* It causes an exception trap to the SWI hardware vector (thus causing a
change to supervisor mode, plus the associated state saving), thus
causing the SWI exception handler to be called.

* The handler can then examine the comment field of the instruction to
decide what operation has been requested.

* By making use of the SWI mechansim, an operating system can
implement a set of privileged operations which applications running in
user mode can request.

10/28/2024 ARM-Thumb Instruction Set/Dr.G.Arthy /EEE/SNSCE 24 /12

a_.

Software Interrupt Instruction

o The Thumb software interrupt (SWI) instruction
causes a software interrupt exception. If any
interrupt or exception flag is raised in Thumb
state,the processor automatically reverts back to
ARM state to handle the exception

o Syntax: SWI immediate

~»

FIrorionss

SWI | software interrupt | Ir_swc = address of instruction following the SWI
Spst_svc = cpsr

e =vectors + 0x8

cpsr mode =SVC

¢psr I =1 (mask IRQ interrupts)

¢psr T=0(ARM state)

10/28/2024

ARM-Thumb Instruction Set/Dr.G.Arthy /EEE/SNSCE 25/12

ASSESSMENT

LT TIons

1) What is the advantage of using Thumb instruction?

2)How many branch instruction does Thumb support?

-~ E’oa:\k:\"‘:
R
T’ .'P

My
RULES SINESS

-

10/28/2024 ARM-Thumb Instruction Set/Dr.G.Arthy /EEE/SNSCE 26/12

FIHTITIonsS

10/28/2024 ARM-Thumb Instruction Set/Dr.G.Arthy /EEE/SNSCE 27 /12

