

### SNS COLLEGE OF ENGINEERING



Kurumbapalayam (Po), Coimbatore - 641 107

#### **An Autonomous Institution**

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

#### DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

## COURSE NAME :19IT301 COMPUTER ORGANIZATION AND ARCHITECTURE

II YEAR /III SEMESTER

Unit 5: I/O ORGANIZATION AND PARALLELISM

Topic 7: Instruction Level Parallelism : Concepts and Challenges



## **ILP**



• The simultaneous execution of multiple instructions from a program.

While pipelining is a form of ILP, the general application of ILP goes much further into more aggressive techniques to achieve parallel execution of the instructions in the instruction stream.



## **ILP**



## Two basic approaches:

- 1. rely on hardware to discover and exploit parallelism dynamically, and
- rely on software to restructure programs to statically facilitate parallelism.

These techniques are complimentary. They can be and are used to improve performance



## Dependencies and Hazards



- 3 types of dependencies:
- data dependencies (or true data dependencies),
- name dependencies, and
- control dependencies.



#### **Examples of each dependence in ILP**

# INSTITUTION'S

#### 1. Data Dependence

Read After Write(RAW)

Instruction j tries to read operand before I Instrn writes it

I: add r1,r2,r3

J: sub r4,r1,r3

2.Anti-dependence

Instr J writes operand before Instr I reads it

I: sub r4,r1,r3

J: add r1,r2,r3

K: mul r6,r1,r7

3. Output dependence

InstrJ writes operand before Instr I writes it.

I: sub r1,r4,r3

J: add r1,r2,r3

K: mul r6,r1,r7



## Data hazards



A hazard exists whenever there is a name or data dependence between two instructions and they are close enough that their overlapped execution would violate the program's order of dependency.

Possible data hazards:

RAW (read after write)

WAW (write after write)

WAR (write after read)

RAR (read after read) is not a hazard.



## Parallel processing challenges and solutions



| Technique                                     | Reduces                                                                          |
|-----------------------------------------------|----------------------------------------------------------------------------------|
| Forwarding and bypassing                      | Potential data hazard stalls                                                     |
| Delayed branches and simple branch scheduling | Control hazard stalls                                                            |
| Basic dynamic scheduling (scoreboarding)      | Data hazard stalls from true<br>dependences                                      |
| Dynamic scheduling with renaming              | Data hazard stalls and stalls from<br>anti dependences and output<br>dependences |
| Dynamic branch prediction                     | Control stalls                                                                   |
| Issuing multiple instructions per cycle       | Ideal CPI                                                                        |
| Speculation                                   | Data hazard and control hazard stalls                                            |
| Dynamic memory disambiguation                 | Data hazard stalls with memory                                                   |
| Loop unrolling                                | Control hazard stalls                                                            |
| Basic compiler pipeline scheduling            | Data hazard stalls                                                               |
| Compiler dependence analysis                  | Ideal CPI, data hazard stalls                                                    |
| Compiler speculation                          | Ideal CPI, data, control stalls                                                  |



## Assessment



What is ILP?
What are the challenges?
What is data dependency?
What is output dependency?





## Reference



1. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", McGraw-Hill, 6<sup>th</sup> Edition 2012.