GREATEST COMMON DIVISOR

View the lecture on YouTube: https://youtu.be/IfLqUhTNQ3c

Greatest Common Divisor (GCD)

The greatest common divisor (GCD) of two integers a and b, not both zero, is the largest positive integer that divides both a and b; it is denoted by (a, b). For example, (12, 18) = 6, (12, 25) = 1, (11, 19) = 1, (-15, 25) = 5, and (3, 0) = 3.

Important Results

A positive integer d is the gcd of two positive integers a and b, if

- (i) d|a and d|b.
- (ii) If $c \mid a$ and $c \mid b$ then $c \mid d$, where c is the positive integer .

Theorem 1: The GCD of positive integers a and b is the linear combination with respect to a and b.

Proof:

Let
$$S = \{xa + yb/xa + yb > 0, x, y \in Z\}.$$

For
$$x = 1$$
 and $y = 0$, $S = a \Rightarrow S$ is non empty.

Therefore by well ordering principle, let S has the least positive integer d.

d = la + mb for some positive integers l and m.

To Prove:
$$d = gcd(a, b)$$
.

Since d>0, by the division algorithm $a\ and\ d$, there exist an integers q and r such that

$$a = qd + r, 0 \le r < d (1)$$

$$r = a - qd$$

$$= a - q(la + mb)$$

$$= (1 - ql)a + (-qm)b.$$

This shows r is the linear combination of a and b.

If $r \neq 0$, then r > 0, and so $r \in S$. Further r < d.

Which is a contradiction that d is the least positive integer of S.

Put r = 0, in equation (1), so $a = qd \Rightarrow d | a$.

similarly we can prove that d|b.

Thus, d is the common divisor of a and b.

Hence d = gcd(a, b).

Theorem 2: Prove that two positive integers a and b are relatively prime iff there exist an integers α and β such that $\alpha a + \beta b = 1$.

Proof:

If a and b are relatively prime then (a, b) = 1.

we know that, there exist an integers α and β such that $\alpha a + \beta b = 1$.

Conversely, let $\alpha a + \beta b = 1$.

To Prove: (a, b) = 1.

If d = gcd(a, b), then d|a and d|b.

 \Rightarrow $d \mid \alpha \alpha + \beta b$

 \Rightarrow d|1

 \therefore $(a,b)=1 \Rightarrow a$ and b are relatively prime.

Theorem 3: If a|c and b|c and (a,b)=1, then prove that ab|c.

Proof:

Given: a|c and b|c

c = ma and c = nb.

Also given that (a,b)=1. $\Rightarrow \alpha a + \beta b = 1$, for some integers α and β .

$$\alpha ac + \beta bc = c$$

$$\alpha a(nb) + \beta b(ma) = c$$

$$(\alpha n + \beta m)ab = c$$

 $\Rightarrow ab|c$.

Theorem 4: Prove that (a, a - b) = 1 if f(a, b) = 1.

Proof:

Let
$$(a.b)=1$$
.

To Prove: (a, a - b) = 1.

 \exists an integer l and m such that la + mb = 1.

$$\Rightarrow$$
 $la + ma + mb - ma = 1$

$$\Rightarrow \qquad (l+m)a - m(a-b) = 1.$$

$$\Rightarrow \qquad (l+m)a + (-m)(a-b) = 1.$$

$$\therefore (a, a - b) = 1.$$

Conversely,

Let
$$(a, a - b) = 1$$
.

To Prove:
$$(a.b)=1$$
.

 \exists an integer α and β such that

$$\alpha a + \beta (a - b) = 1.$$

$$(\alpha + \beta)a + (-\beta)b = 1.$$

Therefore, (a.b)=1.

The Euclidean Algorithm

Suppose a and b are positive integers $a \ge b$.

If
$$a = b$$
, then $(a, b) = (a, a) = a$.

So, assume a > b

Then by successive application of division algorithm, we have

$$a=q_1b+r_1,\quad 0\leq r_1\leq d$$

$$b = q_2 r_1 + r_2 \quad 0 \le r_2 \le r_1$$

.

$$r_{n-1} = q_{n+1} r_n + 0$$

The sequence of remainders terminate with remainder 0.

Thus, $(a, b) = r_n$, where r_n is the non zero remainder.

Example 1: Evaluate (2076,1776) or Find the GCD of 2076 and 1776.

Solution:

Apply the division algorithm with 2076 (the larger of the two numbers) as the dividend and 1776 as the divisor. Applying the division algorithm successively, continue this procedure until a zero remainder is reached.

$$2076 = 1 \cdot 1776 + 300$$

$$1776 = 5 \cdot 300 + 276$$

$$300 = 1 \cdot 276 + 24$$

$$276 = 11 \cdot 24 + 12$$

$$24 = 2 \cdot 12 + 0$$

$$\therefore (2076, 1776) = 12.$$

Example 2: Using the Euclidean algorithm, express (4076, 1024) as a linear combination of 4076 and 1024.

Solution:

By applying the division algorithm successively,

$$4076 = 3(1024)+1004$$

$$1024 = 1(1004)+20$$

$$1004 = 50(20)+4$$

$$20 = 5(4)+0$$

The last non zero remainder is 4.

$$\therefore$$
 (4076, 1024) = 4.

Using the above equations in reverse order, we can express the gcd(4076, 1024)=4 as a linear combination of 1024 and 4076.

$$4 = 1004 - 50 \cdot 20$$

= $1004 - 50(1024 - 1 \cdot 1004)$ (substitute for 20)
= $51 \cdot 1004 - 50 \cdot 1024$
= $51(4076 - 3 \cdot 1024) - 50 \cdot 1024$ (substitute for 1004)
= $51 \cdot 4076 + (-203) \cdot 1024$

: The gcd 4 is the linear combination of the numbers 1024 and 4076.

Example 3: Apply Euclidean algorithm to express the gcd of 1976 and 1776 as a linear combination of them.

Solution:

Applying the division algorithm successively, we get

$$1976 = 1(1776)+200$$

$$1776 = 8(200)+176$$

$$200 = 1(176)+24$$

$$176 = 7(24)+8$$

$$24 = 3(8)+0$$

The last non zero remainder is 8.

$$\therefore$$
 gcd(1976,1776)=8.

Now we shall express (1976,1776)= 8 as a linear combination of 1976 and 1776.

.

$$8 = 176 - 7(24)$$

$$= 176 - 7(200 - 1(176))$$

$$= 8(176) - 7(200)$$

$$= 8(1776 - 8(200)) - 7(200)$$

$$= 8(1776) - 71(200)$$

$$= 8(1776) - 71(1976 - 1(1776))$$

$$=$$
 79(1776) $-$ 71(1976)

$$=$$
 79(1776)+ (-71) (1976).

: The gcd is the linear combination of the numbers 1776 and 1976.

Theorem: (The Euclid's Lemma)

Statement: If p is a prime and p|ab, then p|a or p|b.

Proof:

Given that p is a prime.

To Prove that either p|a or p|b.

Suppose p is not a factor of a.

Then p and a are relatively prime, (p, a)=1

there are integers α and β such that $\alpha p + \beta \alpha = 1$.

Multiply both sides of this equation by b, we get $\alpha pb + \beta ab = 1$.

Since $p \mid p$ and $p \mid ab \Rightarrow p \mid \alpha pb + \beta ab$.

$$\therefore p | (\alpha p + \beta a)b \Rightarrow p | b. \text{ (since } \alpha p + \beta a = 1.)$$

FUNDAMENTAL THEOREM OF ARITHMETIC

Theorem: (The Fundamental theorem of Arithmetic)

Statement:

Every integer $n \ge 2$ either is a prime or can be expressed as a product of primes. The factorization into primes is unique except for the order of the factors.

Proof:

First, we will show by strong induction that n either is a prime or can be expressed as a product of primes. Then we will establish the uniqueness of such a factorization.

Let P(n) denote the statement that n is a prime or can be expressed as a product of primes.

To show that P(n) is true for every integer $n \ge 2$.

Since 2 is a prime, clearly P(2) is true.

Now assume P(2),P(3),...,P(k) are true; that is, every integer ≥ 2 through k either is a prime or can be expressed as a product of primes.

If k + 1 is a prime, then P(k + 1) is true.

Suppose k + 1 is composite.

Then k + 1 = ab for some integers a and b, where 1 < a, b < k + 1.

By the inductive hypothesis, a and b either are primes or can be expressed as products of primes.

In any event, k + 1 = ab can be expressed as a product of primes.

Thus, P(k + 1) is also true. Thus, by strong induction, the result holds for every integer $n \ge 2$.

.