

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641 107

AN AUTONOMOUS INSTITUTION

Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

4.8 Architecture and Protocol Stack of Wireless Sensor Networks (WSN)

1. Architecture of Wireless Sensor Networks

The architecture of a WSN typically consists of several key components that work together to collect and transmit data from sensor nodes to users or centralized systems. Here's a breakdown of the main elements:

A. Sensor Nodes

- Components:
 - Sensors: Detect environmental parameters (e.g., temperature, humidity, light, motion).
 - Microcontroller: Processes the data collected by the sensors.
 - Transceiver: Enables communication with other nodes and gateways.
 - **Power Supply**: Often battery-operated, requiring energy-efficient designs.

B. Gateway Nodes

- Function: Act as intermediaries between sensor nodes and external networks (like the internet).
- Role:
 - Aggregate data from multiple sensor nodes.
 - Forward data to cloud servers or databases for analysis.
 - Manage communication protocols between the WSN and external networks.

C. Network Infrastructure

- **Physical Layout**: Comprises the arrangement of sensor nodes, gateways, and the paths for data transmission.
- Types of WSNs:
 - Flat Architecture: All nodes are equal in functionality.
 - **Hierarchical Architecture**: Nodes are organized in levels (e.g., cluster heads collect data from other nodes).
 - **Grid-Based Architecture**: Divides the area into grid cells, with nodes in each cell cooperating for data collection.

D. Data Processing and Analysis

- Cloud Services or Local Servers: Where data from sensor nodes is stored, processed, and analyzed.
- **Data Analytics**: Techniques used to derive insights from the collected data, which may involve machine learning or statistical analysis.

E. User Interface

• **Applications/Dashboards**: Allow users to visualize data, interact with the system, and receive alerts. This can include web applications or mobile apps.

2. Protocol Stack of Wireless Sensor Networks

The protocol stack for WSNs consists of several layers, each responsible for specific functions in the communication process. The typical layers include:

A. Physical Layer

- Function: Responsible for the physical transmission of data over the communication medium.
- Characteristics:
 - Defines radio frequencies and modulation techniques.
 - Manages hardware specifications for sensors and communication devices.

B. Data Link Layer

- Function: Provides node-to-node data transfer and manages access to the shared medium.
- **Protocols**: Examples include:
 - **IEEE 802.15.4**: A standard commonly used for low-rate wireless personal area networks (LR-WPANs).
 - **MAC Protocols**: Manage how devices in a network gain access to the medium, including CSMA/CA and TDMA.

C. Network Layer

- Function: Manages routing and forwarding of data packets between nodes.
- Protocols:
 - **Routing Protocols**: Determine the best paths for data transmission. Examples include:
 - AODV (Ad hoc On-Demand Distance Vector)
 - LEACH (Low-Energy Adaptive Clustering Hierarchy)
 - RPL (Routing Protocol for Low-Power and Lossy Networks)

D. Transport Layer

- **Function**: Ensures reliable data transfer between end nodes and manages error recovery and flow control.
- **Protocols**: While traditional protocols like TCP and UDP can be used, lightweight alternatives designed for WSNs may be preferred due to resource constraints.

E. Application Layer

- Function: Provides application-specific services and functionalities.
- Characteristics:
 - Contains various applications tailored for specific use cases, such as environmental monitoring, industrial automation, and healthcare applications.
 - Interfaces with the user through dashboards or mobile applications to display data and alerts.