

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore - 641 107

AN AUTONOMOUS INSTITUTION

Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

23MAT101 - MATRICES AND CALCULUS QUESTION BANK UNIT II APPLICATIONS OF DIFFERENTIAL CALCULUS PART A

Remember:

- 1. Define circle of curvature.
- 2. Find the centre of curvature for $y=x^2$ at the origin.
- 3. Find the curvature of the curve $2x^2+2y^2+x-2y+1=0$.
- 4. What is the curvature of the circle $(x-1)^2+(y+2)^2=16$ at any point on it?
- 5. Define involutes and evolutes.
- 6. Write the properties of evolutes.
- 7. Find the envelope of the lines $\sqrt{x} + \sqrt{y} = \sqrt{a}$ where m is the parameter.
- 8. Find the envelope of the family of straight lines $y = mx + \frac{a}{m}$, where m is a parameter.
- 9. Find the envelope of the family of straight lines $y = mx + \frac{1}{m}$, where m is a parameter.

10. Find the envelope of the lines $\frac{x}{t} + yt = 2c$, t being a parameter.

- 11. Find the envelope of the straight lines $x\cos\theta + y\sin\theta = \alpha$ where θ is the parameter.
- 12. Find the envelope of the lines $x \csc\theta y \cot\theta = a$, θ being the parameter.
- 13. Find the envelope of the family of circlesc $(x-\alpha)^2+y^2=r^2$, α being the parameter.

PART-B

Remember:

- 1. Find the equation of the circle of curvature at $\left(\frac{a}{4}, \frac{a}{4}\right)$ on $\sqrt{x} + \sqrt{y} = \sqrt{a}$.
- 2. Find the equation of the circle of curvature of the parabola $y^2 = 12x$ at the point (3,6).
- 3. Find the equation of the circle of curvature of the rectangular hyperbola xy=12 at the point (3,4).

4. Find the equation of the circle of curvature of $\frac{x^2}{4} + \frac{y^2}{9} = 2$ at (2,3).

- 5. Find the centre of curvature of $x^3+y^3=6xy$ at (3,3).
- 6. Find the equation of the evolute of the parabola $y^2 = 4ax$.
- 7. Find the equation of the evolute of the rectangular hyperbola $xy = c^2$
- 8. Find the evolute of the parabola $x^2 = 4ay$.

- 9. Find the evolute of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$.
- 10. Find the evolute of the cycloid $x = a(\theta \sin \theta)$, $y = a(1 \cos \theta)$.
- 11. Find the evolute of $\sqrt{x} + \sqrt{y} = \sqrt{a}$.
- 12. Find the envelope of the family of straight lines $y = mx 2am am^3$, where m is a parameter.
- 13. Find the envelope of the family of straight lines $x \cos \alpha + y \sin \alpha = c \sin \alpha \cos \alpha$, α being the parameter.
- 14. Find the envelope of straight line $\frac{x}{a} + \frac{y}{b} = 1$, where a and b be the parameters that are connected by the relation a+b=c.
- 15. Find the envelope of $\frac{x}{a} + \frac{y}{b} = 1$, where a and b be the parameters that are connected by the relation $a^2+b^2=c^2$, c being constant.
- 16. Find the envelope of family of straight lines $\frac{x}{a} + \frac{y}{b} = 1$, where a and b be the parameters that are connected by the relation $a^2+b^2=64$.
- 17. Find the envelope of straight line $\frac{x}{a} + \frac{y}{b} = 1$, where a and b be the parameters are connected by the relation $a^n + b^n = c^n$.
- 18. Find the envelope of straight line $\frac{x}{a} + \frac{y}{b} = 1$, where a and b are connected by the relation ac =c², c is constant.
- 19. Find the envelope of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where a and b be the parameters that are connected by the relation $a^2+b^2=c^2$, c being constant.
- 20. Find the envelope of the system of ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where a and b are connected by the relation ab=4.

Apply:

- 21. Show that the evolutes of the parabola $y^2 = 4ax$ is the curve $27ay^2 = 4(x-2a)^3$.
- 22. Obtain the equation of the evolute of the curve $x = a(\cos \theta + \theta \sin \theta), y = a(\sin \theta \theta \cos \theta)$
- 23. Show that the evolute of the cycloid $x = a(\theta \sin \theta)$, $y = a(1 \cos \theta)$ is another cycloid.
- 24. Obtain the evolute of $x = a(\theta + \sin \theta)$, $y = a(1 \cos \theta)$.