

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE NAME : 19CS508 - BIG DATA ANALYTICS

III YEAR / V SEMESTER

Unit 5 - NOSQL DATA MANAGEMENT FOR BIG DATA AND VISUALIZATION

Topic 1 : NoSQL Databases: Schema-less Models : Increasing Flexibility for Data Manipulation

What is a NoSQL database?

- When people use the term "NoSQL database," they typically use it to refer to any non-relational database.
- Some say the term "NoSQL" stands for "non-SQL" while others say it stands for "not only SQL." Either way, most agree that NoSQL databases store data in a more natural and flexible way.
- NoSQL, as opposed to SQL, is a database management approach, whereas SQL is just a query language, similar to the query languages of NoSQL databases.

Why use NoSQL?

- Customer experience has quickly become the most important competitive differentiator and ushered the business world into an era of monumental change. As part of this revolution, enterprises are interacting digitally – not only with their customers, but also with their employees, partners, vendors, and even their products – at an unprecedented scale.
- This interaction is powered by the internet and other 21st century technologies – and at the heart of the revolution of NoSQL are a company's big data, cloud, mobile, social media, and IoT applications.

- 1. these applications different from legacy enterprise applications like ERP, HR, and financial accounting etc.,
- Today's web, mobile, and IoT applications share one or more (if not all) of the following characteristics.
- They need to: Support large numbers of concurrent users (tens of thousands, perhaps millions)
- Deliver highly responsive experiences to a globally distributed base of users
- Be always available no downtime
- Handle semi- and unstructured data
- Rapidly adapt to changing requirements with frequent updates and new features

- Global 2000 enterprises are rapidly embracing NoSQL databases to power their mission-critical applications:
- **Tesco**, Europe's No. 1 retailer, deploys NoSQL for e-commerce, product catalog, and other applications
- **Marriott** deploys NoSQL for its reservation system that books \$38 billion annually
- **Gannett**, the No. 1 U.S. newspaper publisher, uses NoSQL for its proprietary content management system, Presto
- **GE** deploys NoSQL for its Predix platform to help manage the Industrial Internet

STE

Cont..

• NoSQL databases are generally classified into four main categories:

1.Document databases: These databases store data as semi-structured documents, such as JSON or XML, and can be queried using document-oriented query languages.

2.Key-value stores: These databases store data as key-value pairs, and are optimized for simple and fast read/write operations.

3.Column-family stores: These databases store data as column families, which are sets of columns that are treated as a single entity. They are optimized for fast and efficient querying of large amounts of data.

4.Graph databases: These databases store data as nodes and edges, and are designed to handle complex relationships between data.

Basic support for data visualization	
Basic authentication, limited access control	
Limited support for online data archival	
Basic key-based data retrieval	
Basic CRUD operations, limited data manipulation capabilities	
Stores any type of data	
Limited support for complex analytics	
Horizontal scalability and eventual consistency	
Simple indexes	
Limited by key	
Schemaless	

Key-value

database

Basic support for data visualization
Role-based access control, encryption at-rest, encryption in transit, and in use
sutomatic online data archival
Full-text search, vector search
Advanced query and data manipulation capabilities
Stores JSON/BSON data
Suited for time-series, IoT analytics, real-time analytics
Horizontal scalability and eventual consistency
Indexes on fields
Rich querying capability
Flexible schema
JSON/BSON documents

U

Document

database

visualization
Role-based access control (RBAC), encryption at rest, in transit
Limited support for online data archival
imited search capabilities
Supports advanced graph raversal and manipulation operations
Nodes, edges, and relationships
Well-suited for graph analytics
Horizontal scalability and eventual consistency
Indexes on nodes/edges
Specialized graph query
Flexible schema
Nodes, edges, and relationships
Graph database
Graph database

Basic support for data

Introduction to Big Data / 19CS508 - Big data Analytics /Mr.K.Karthikeyan/CSE/SNSCE

Key Features of NoSQL:

1.Dynamic schema: NoSQL databases do not have a fixed schema and can accommodate changing data structures without the need for migrations or schema alterations.

2.Horizontal scalability: NoSQL databases are designed to scale out by adding more nodes to a database cluster, making them well-suited for handling large amounts of data and high levels of traffic.

3.Document-based: Some NoSQL databases, such as MongoDB, use a document-based data model, where data is stored in a schema-less semi-structured format, such as JSON or BSON.

4.Key-value-based: Other NoSQL databases, such as Redis, use a key-value data model, where data is stored as a collection of key-value pairs.

5.Column-based: Some NoSQL databases, such as Cassandra, use a column-based data model, where data is organized into columns instead of rows.

Ex: Graph Databases: Examples – Amazon Neptune, Neo4j
Key value store: Examples – Memcached, Redis, Coherence
Column: Examples – Hbase, Big Table, Accumulo
Document-based: Examples – MongoDB, CouchDB, Cloudant

Cont.

- 6. Distributed and high availability: NoSQL databases are often designed to be highly available and to automatically handle node failures and data replication across multiple nodes in a database cluster.
- **7. Flexibility:** NoSQL databases allow developers to store and retrieve data in a flexible and dynamic manner, with support for multiple data types and changing data structures.
- 8. **Performance:** NoSQL databases are optimized for high performance and can handle a high volume of reads and writes, making them suitable for big data and real-time applications.

Cont.

Rebalancing **Command Issuing** Hardwarel Get fresh Balance NoSQL resize metrics data Cluster resize Cluster Cloud Monitoring Coordinator Management Adjust Manage Collect resources NoSQL nodes Performance Metrics Add/delete VMs Cloud Provider Virtual NoSQL Cluster

Architecture of our Cloud-based NoSQL

Introduction to Big Data / 19CS508 - Big data Analytics /Mr.K.Karthikeyan/CSE/SNSCE

Cont.

MongoDB collections & references customer address contact id__id objectid NN _id objectId NN 🗾 _id objectid NN string NN name 💼 customer_id objectid NN contact_id objectid NN • string NN surname email string city string phone string street string zip_code string string country

Activity

Advantages

- High scalability
- Flexibility
- High availability
- Performance
- Cost-effectiveness
- Disadvantages
- Lack of standardization
- Lack of ACID compliance
- Open-source

Assessment 1

REFERENCES

- Anand Rajaraman and Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University Press, 2012.
- David Loshin, "Big Data Analytics: From Strategic Planning to Enterprise Integration with Tools, Techniques, NoSQL, and Graph", Morgan Kaufmann/El sevier Publishers, 2013
- 3. Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data", Wiley publishers, 2015.

THANK YOU