UNIT II: ELECTRICAL MACHINES

Two-mark Questions:

- 1. What is the principle of operation of a DC generator?
 - Answer: A DC generator operates on the principle of electromagnetic induction, where a conductor moving through a magnetic field induces an electromotive force (EMF) in the conductor.

2. Define back EMF in a DC motor.

• **Answer:** Back EMF is the voltage generated by the rotating armature of a DC motor that opposes the applied voltage and reduces the current flowing through the motor.

3. What are the main parts of a single-phase transformer?

• **Answer:** The main parts of a single-phase transformer are the core, primary winding, secondary winding, and insulation.

4. What is the purpose of a commutator in a DC machine?

• **Answer:** The commutator in a DC machine converts the alternating current induced in the armature windings into direct current for external circuits.

5. Explain the working principle of a three-phase induction motor.

• **Answer:** A three-phase induction motor works on the principle of electromagnetic induction, where a rotating magnetic field created by the stator induces currents in the rotor, causing it to rotate.

6. What is slip in an induction motor?

• **Answer:** Slip is the difference between the synchronous speed and the actual speed of the rotor, expressed as a percentage of the synchronous speed.

7. Define the term 'armature reaction' in a DC machine.

• **Answer:** Armature reaction refers to the effect of the magnetic field produced by the armature current on the distribution of the main magnetic field in a DC machine.

8. What are the applications of a DC motor?

• **Answer:** DC motors are commonly used in applications requiring variable speed and high starting torque, such as electric vehicles, conveyors, and elevators.

9. Explain the significance of transformer efficiency.

• **Answer:** Transformer efficiency is the ratio of the output power to the input power. High efficiency indicates that less energy is lost as heat and other losses.

10. What is the function of laminations in a transformer core?

• **Answer:** Laminations in a transformer core reduce eddy current losses, which improves the efficiency of the transformer.

11. Describe the concept of voltage regulation in transformers.

• **Answer:** Voltage regulation is the measure of the change in secondary voltage from no-load to full-load conditions, expressed as a percentage of the no-load voltage.

12. What is the importance of grounding the neutral point in electrical machines?

• **Answer:** Grounding the neutral point in electrical machines provides a reference point for the system voltage, improves safety, and helps in the protection of the system during faults.

13. Define synchronous speed in an induction motor.

• **Answer:** Synchronous speed is the speed at which the magnetic field rotates in the stator of an induction motor. It is given by Ns=120fPN_s = \frac{120f}{P}Ns=P120f, where fff is the frequency and PPP is the number of poles.

14. What is the function of brushes in a DC motor?

• **Answer:** Brushes in a DC motor conduct current between the stationary wires and the rotating armature, allowing the motor to function.

15. Explain the term 'mutual induction' in the context of transformers.

• **Answer:** Mutual induction is the process by which a change in current in one coil induces a voltage in another coil that is magnetically linked to the first coil.