SNS COLLEGE OF ENGINEE]

Kurumbapalayam(Po), Coimbatore - 641 107
Accredited by NAAC-UGC with ‘A’ Grade
Approved by AICTE, Recognized by UGC & Affiliated to Anna Univer

Department of Artificial Intelligence an

Course Name: 231TB201 Data structures a
IT Year / III semester

Unit III — Sorting, searching and ha

Topic: Bubble Sort



s an elementary sorting algorithm, which works by repeatedly

djacent elements, 1f necessary. When no exchanges are requir

st 1s an array of n elements. We further assume that swap func

lues of the given array elements.



function:

Sort (int array([], int size){

0; i<size; i++) {

= 0; j<size-i-1; j++) {

/[j] > array[j+1]) { //when the current item is bigger

-Mp; Analysis

) = array/j]; Here, the number of comparisons

j] = array[j+1]; 1+24+3+..+(-1)=n(n-1)
j+1] = temp;

.

.



)N unsorted array for our example. Bubble sort takes O(n2) til
ping it short and precise.

1 2 3 4

3 24 B350 P10

rt starts with very first two elements, comparing them to che
ater.

1 2z 3 a3

320 1250 1235 ] | 20



case, value 33 is greater than 14, so it is already in sorted locations.
we compare 33 with 27.

I| 1 2 3 “1

1 33 27 35 10

1d that 27 is smaller than 33 and these two values must be swapped.

r 1 2 3 “

) 27 33 35 10

ve compare 33 and 35. We find that both are in already sorted positions

+ 1 2 3 «1

1 27 33 35 10

NNe move to the next two values, 35 and 10.

I‘ 1 2 3 4

) 27 33 35 10

ow then that 10 is smaller 35. Hence they are not sorted. We swap thes
. We find that we have reached the end of the array. After one iteration,

P~ N\ 7 C‘I’\hl llf‘l IAAII I;IIf\ +L‘;¢" B



be precise, we are now showing how an array should look like after each
~ation. After the second iteration, it should look like this —

O 1 2 3 “}

14 27 33 10 35

O 1 2 3 4

14 27 10 33 35

tice that after each iteration, at least one value moves at the end.

O 1 2 3 g

14 27 10 323 35

O 1 2 3 a

14 10 27 323 35

O 1 2 3 v}

14 10 A 323 35

O 1 2 3 “}

10 14 27 23 35



