

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

AN AUTONOMOUS INSTITUTION

Approved by AICTE, New Delhi and Affiliated to Anna University, Chennai **INTERNAL ASSESSMENT EXAMINATION – III- ANSWER KEY V** Semester

B.E-ELECTRICAL AND ELECTRONICS ENGINEERING

19EE501 – TRANSMISSION AND DISTRIBUTION

Regulations 2019

Duration Date

: 1 Hour 30 Minutes : 07.10.2024

Session: FN **Answer ALL questions** **Maximum: 50 Marks**

	PART A - (5 X 2 = 10 marks)						
Q.No	Question	Μ	СО	BL			
1	What is stringing chart.	2	CO-4	L -2			
	A stringing chart is a graphical representation used to determine the correct						
	tension and sag for a transmission line conductor during installation. It helps in						
	maintaining proper clearance and ensures that the conductor remains within the						
	desired limits under various conditions.						
2	What is the necessity of grading of an under cable.	2	CO-4	L -2			
	Grading of an underground cable is necessary to ensure uniform voltage						
	distribution across the insulation layers. It minimizes the electric stress in the						
	insulation, reducing the risk of insulation breakdown and prolonging the cable's						
	life.						
3	List the properties of the insulators	2	CO-4	L -2			
	High dielectric strength						
	High resistance to electrical conduction						
	Ability to withstand mechanical stresses						
	• Resistance to environmental factors like moisture and temperature variations						
4	What are the various methods of earthing in substation?	2	CO-5	L -2			
	System Earthing & Equipment Earthing						

5	Defin	e safety factor.	2	CO-5	L -2						
	Safety factor is the ratio of the ultimate strength (or maximum stress a material										
	can withstand) to the actual working stress in a system. It provides a margin of										
	safety	to prevent failure under unexpected loads or conditions.									
PART B - (2 X 13 = 26 marks)											
6.	(a)	A single core cable for use on 11 kV, 50 Hz system has conductor area of	13	CO-4	L-3						
		0.645 cm^2 and internal diameter of sheath is 2.18 cm . The permittivity of									
		the dielectric used in the cable is 3.5 . Find (i) the maximum electrostatic									
		stress in the cable (ii) minimum electrostatic stress in the cable (iii)									
		capacitance of the cable per km length (iv) charging current.									
		Solution. Area of cross-section of conductor, $a = 0.645 \text{ cm}^2$									
		Diameter of the conductor, $d = \sqrt{\frac{4a}{\pi}} = \sqrt{\frac{4 \times 0.645}{\pi}} = 0.906 \text{ cm}$									
		Internal diameter of sheath, $D = 2.18$ cm (<i>i</i>) Maximum electrostatic stress in the cable is									
		$g_{max} = \frac{2V}{d\log_e \frac{D}{d}} = \frac{2 \times 11}{0.906 \log_e \frac{2.18}{0.906}} \text{ kV/cm} = 27.65 \text{ kV/cm} r.m.s.$ (<i>ii</i>) Minimum electrostatic stress in the cable is									
		$g_{min} = \frac{2 \text{ V}}{D \log_e \frac{D}{d}} = \frac{2 \times 11}{2 \cdot 18 \log_e \frac{2 \cdot 18}{0 \cdot 906}} \text{ kV/cm} = 11.5 \text{ kV/cm} r.m.s.$									
		(<i>iii</i>) Capacitance of cable, $C = \frac{\varepsilon_r I}{41 \cdot 4 \log_{10} \frac{D}{d}} \times 10^{-9} \text{ F}$									
		Here $\epsilon_r = 3.5$; $l = 1 \text{ km} = 1000 \text{ m}$ $C_r = \frac{3.5 \times 1000}{2.5 \times 1000} \times 10^{-9} = 0.22 \times 10^{-6} \text{ F}$									
		$41 \cdot 4 \log_{10} \frac{2 \cdot 18}{0.906}$									
		(iv) Charging current, $I_C = \frac{V}{X_C} = 2\pi f C V = 2\pi \times 50 \times 0.22 \times 10^{-6} \times 11000 = 0.76 \text{ A}$									
	OR										
	(b)	Discuss the different type of Insulators used in the transmission line.	13	CO-4	L-2						
		The insulators provide necessary insulation between line conductors and									
		supports and thus prevent any leakage current from conductors to earth.									
		Pin type insulators.									

		PART C –(1 x 14 = 14 Marks)			
8.	(a)	In a 33 kV overhead line, there are three units in the string of insulators. If	14	CO-4	L-3
		the capacitance between each insulator pin and earth is 11% of self-			
		capacitance of each insulator, find (i) the distribution of voltage over 3			
		insulators and (ii) string efficiency.			
		Solution. Fig. 8.14. shows the equivalent circuit of string insulators. Let V_1, V_2 and V_3 be the voltage across top, middle and bottom unit respectively. If C is the self-capacitance of each unit, then KC will be the shurt capacitance. $K = \frac{Shunt Capacitance}{Self-capacitance} = 0.11$ Voltage across string, $V = 33/\sqrt{3} = 19.05 \text{ kV}$ At Junction A $I_2 = I_1 + i_1$ or $V_2 \omega C = V_1 \omega C + V_1 K \omega C$ or $V_2 = V_1 (1 + K) = V_1 (1 + 0.11)$ or $V_2 = 1.11 V_1$ (h At Junction B $I_3 = I_2 + i_2$ or $V_3 \omega C = V_2 \omega C + (V_1 + V_2) K \omega C$ or $V_3 = V_2 + (V_1 + V_2) K$ $= 1.11 V_1 + (V_1 + 1.11 V_1) 0.11$ \therefore $V_3 = 1.342 V_1$ (f) Voltage across the whole string is $V = V_1 + V_2 + V_3 = V_1 + 1.11 V_1 + 1.342 V_1 = 3.452 V_1$ or $19.05 = 3.452 V_1$ \therefore Voltage across top unit, $V_1 = 19.05/3.452 = 5.52 \text{ kV}$ Voltage across bottom unit, $V_3 = 1.342 V_1 = 1.342 \times 5.52 = 6.13 \text{ kV}$ Voltage across bottom unit, $V_3 = 1.342 V_1 = 1.342 \times 5.52 = 7.4 \text{ kV}$ (f) String efficiency = $\frac{Voltage across string}{No. of insulators \times V_3} \times 100 = \frac{19.05}{3 \times 7.4} \times 100 = 85.8\%$			
		OR			
	(b)	The towers of height 30 m and 90 m respectively support a transmission	14	CO-5	L-3
		line conductor at water crossing. The horizontal distance between the			
		towers is 500 m. If the tension in the conductor is 1600 kg, find the			
		minimum clearance of the conductor and water and clearance mid-way			
		between the supports. Weight of conductor is 1.5 kg/m. Bases of the			
		towers can be considered to be at water level.			

