

SNS COLLEGE OF ENGINEERING

Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE NAME : 23EET206 CONTROL SYSTEMS AND INSTRUMENTATION

II YEAR ECE /III SEMESTER

Unit 5-Oscilloscope, Signal Generator, Analyzer and Data **Acquisition System**

Topic 3 : Frequency Synthesized Signal Generator

Data Acquisition System/23EET206/Jebarani/EEE/SNSCE

Redesigning Common Mind & Business Towards Excellence

Build an Entrenreneurial Mindset Through Our Design Thinking FrameWou

FREQUENCY SYNTHESIZER

A frequency synthesizer is an electronic circuit that generates a range of frequencies from a single reference frequency. devices such radio > Frequency synthesizers are used in as receivers, televisions, mobile telephones, radiotelephones, walkie-talkies, CB radios, cable television converter boxes, satellite receivers, and GPS systems. \succ A frequency synthesizer use the techniques of frequency may multiplication, frequency division, direct digital synthesis, frequency mixing, and phase-locked loops to generate its frequencies. The stability and accuracy of the frequency synthesizer's output are related to the stability and accuracy of its reference frequency input.

FREQUENCY SYNTHESIZER

A **frequency synthesizer** can be of two types

- Direct Method (Direct Analog Synthesis or Direct Digital Synthesis)
- Indirect Method (Phase Locked Loop, Integer N Synthesizer and Fractional N Synthesizer)

Redesigning Common Mind & Business Towards Excellence

Build an Entrepreneurial Mindset Through Our Design Thinking FrameW

- A Phase-Locked Loop (PLL) is a negative feedback system consists of a phase detector, a low pass filter and a voltage controlled oscillator (VCO) within its loop.
 Its purpose is to synchronize an output signal with a reference or input signal in frequency as well as in phase.
- In the synchronized or "locked" state, the phase error between the oscillator's output signal and the reference signal is zero, or it remains constant.
 If a phase error builds up, a control mechanism acts on the oscillator to reduce the phase error to a minimum so that the phase of the output signal is actually locked

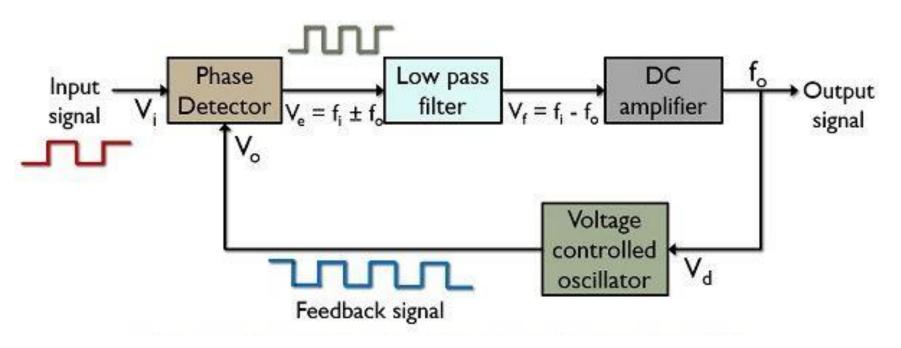
Redesigning Common Mind & Business Towards Excellence

Build an Entrepreneurial Mindset Through Our Design Thinking FrameWork

to the phase of the reference signal. This is why it is called a PLL.

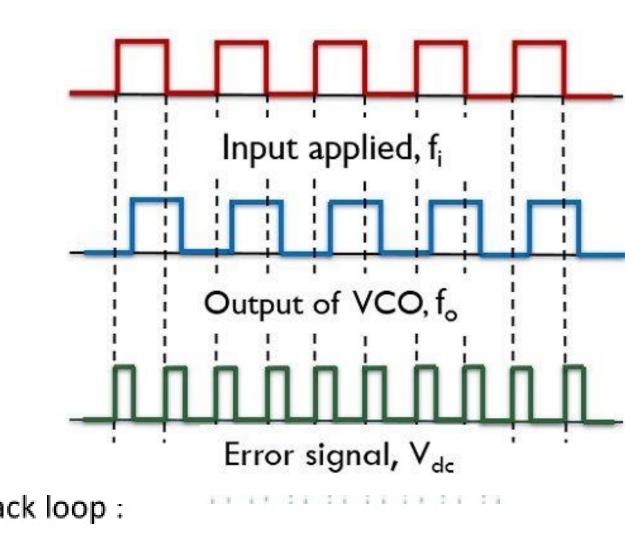
The majority of PLL applications fall into four main categories:

- Frequency synthesis
- Frequency (FM) and phase (PM) modulation and demodulation.
- \blacktriangleright Data and carrier recovery.
- Tracking filters.


Classification of PLLs:

- Analog or Linear PLL (LPLL), Digital PLL (DPLL) is Analog PLL with digital phase detector
- > All-Digital PLL (ADPLL) is a digital loop in two senses: all digital components and all digital (discrete-time) signals.

edesioning Common Mind & Rusiness Towards Excellence



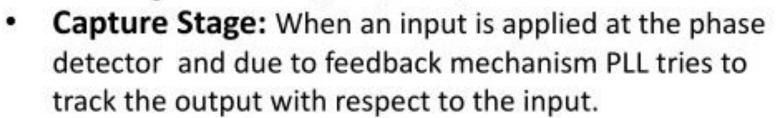
The basic PLL block diagram consists of three components connected in a feedback loop :

A Phase Detector (PD) or Phase Frequency Detector (PFD)

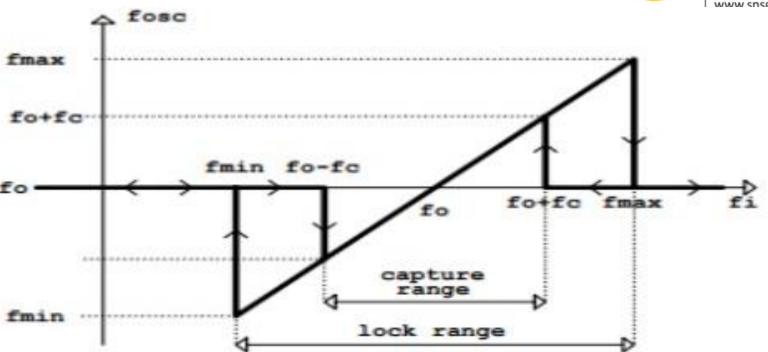
- produces a signal V_{ϕ} proportional to the phase difference between the f_{in} and f_{osc} signal.
- A Loop Filter (LF)
 - filters output voltage V_{out} that controls the frequency of the VCO.
- A Voltage-Controlled Oscillator (VCO)
 - V_{out} at the input of the VCO determines the frequency f_{osc} of the periodic signal V_{osc} at the output of the VCO

A basic property of the PLL atemps to maintain the frequency lock $f_{osc} = f_{in}$ between V_{osc} and V_{in} even if the frequency **f**_{in} of the incoming signal varies in time. Assume the PLL is in the locked condition, and the frequency **f**_{in} of the incoming signal increases slightly. The phase difference between the VCO signal and the incoming signal will begin to increase in time. As a result, the filtered output voltage V_{out} increases I the VCO output frequency f_{osc} increases until it matches f_{in}, thus keeping the PLL in the locked condition. b

Redesioning Common Mind & Business Towards Excellence



STAGES OF PLL



There are three stages of PLL operations:

Free Running Stage: When no input is applied at the phase detector, PLL out put frequency is $f_{osc} = f_o$ where fo free running frequency of the VCO.

Phase Locked Stage: Due to feedback mechanism, the frequency comparison stops when $f_{osc} = f_{in}$.

Lock Range and Capture Range of PLL:

Lock Range of the PLL: The range of frequencies where the locked PLL remains in the locked: $f_{min} \leq f_{in} \leq f_{max}$ The lock range is wider than the capture range.

- ٠
- If the PLL is initially locked, and if $f_{max} < f_{in} < f_{min}$ the PLL becomes unlocked ($f_{in} \neq f_{osc}$). When the PLL is unlocked, the $f_{osc} = f_o$ where f_o is called the center frequency, or the free-running frequency of the VCO. ٠

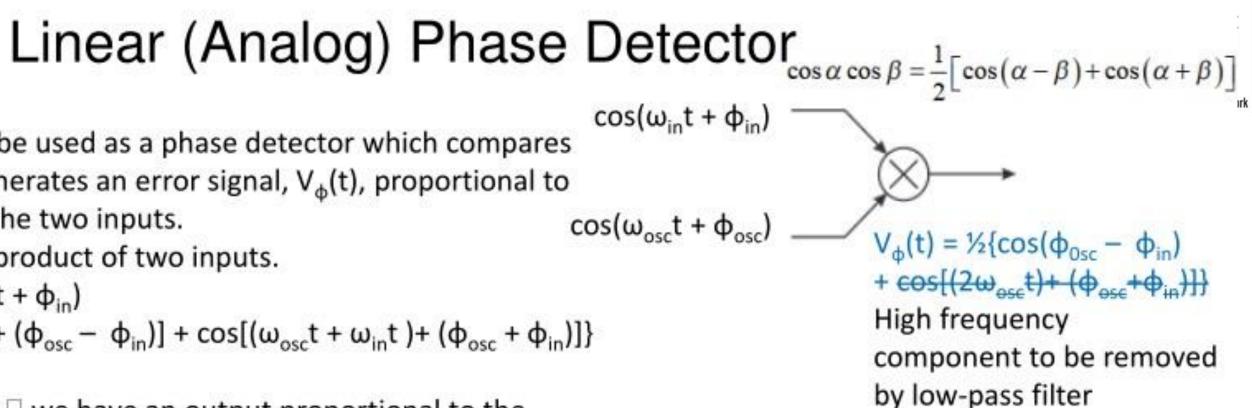
Capture Range of the PLL: The lock can be established again if the incoming signal frequency **f**_{in} gets close enough to **f**_o. The range of frequencies such that the initially unlocked PLL becomes locked: $f_0 - f_c \le f_{in} \le f_0 + f_c$ Sometimes a frequency detector is added to the phase detector to assist in initial acquisition of lock.

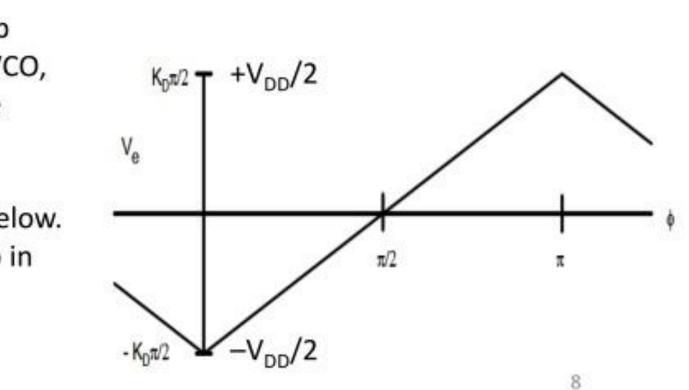
Redesigning Common Mind & Business Towards Excellence

Design Thinking FrameW

An analog multiplier mixer can be used as a phase detector which compares the phase at each input and generates an error signal, $V_{\phi}(t)$, proportional to the phase difference between the two inputs.

Recall that the mixer takes the product of two inputs.

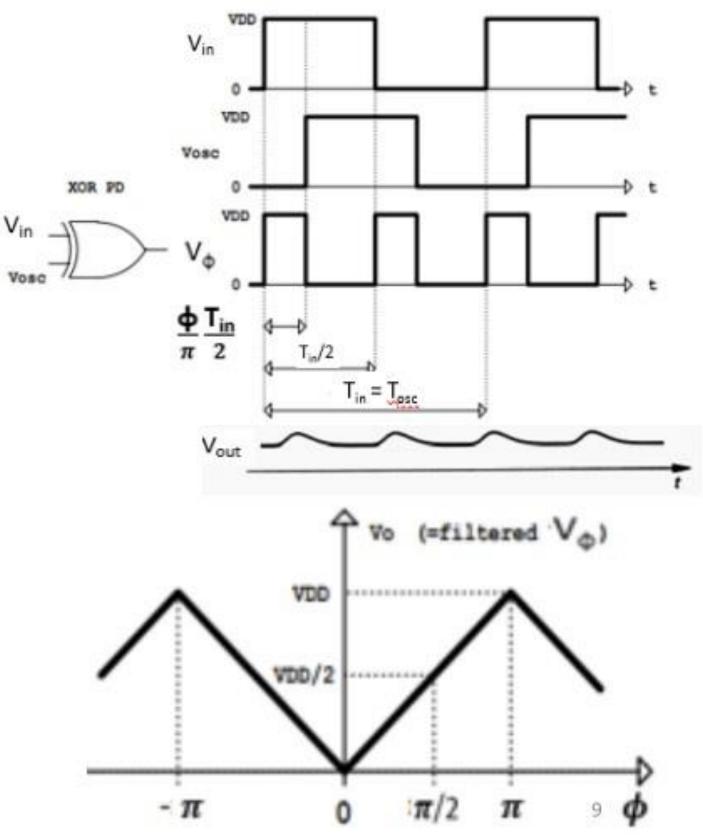

 $V_{\phi}(t) = \cos(\omega_{osc}t + \phi_{osc}) \cos(\omega_{in}t + \phi_{in})$


= (1/2) {cos[($\omega_{osc}t - \omega_{in}t$) + ($\varphi_{osc} - \varphi_{in}$)] + cos[($\omega_{osc}t + \omega_{in}t$) + ($\varphi_{osc} + \varphi_{in}$)]}

When loop is locked ($\omega_{osc} = \omega_{in}$) \Box we have an output proportional to the cosine of the phase difference and one output at twice the input frequency . $V_{\phi}(t) = (1/2) \left\{ \cos(\phi_{osc} - \phi_{in}) + \cos[(2\omega_{osc}t) + (\phi_{osc} + \phi_{in})] \right\}$

The doubled frequency component will be removed by the low-pass loop filter. Any phase difference then shows up as the control voltage to the VCO, a DC or slowly varying AC signal after filtering. K_D is the gain of the phase detector (V/rad).

 $V_{\phi}(t) = K_{p} (\phi_{osc} - \phi_{in})$ where $K_{p} \pi/2 = V_{pp}/2 \Box K_{p} = V_{pp}/\pi$ The averaged transfer characteristic of such a phase detector is shown below. Note that in many implementations, the characteristic may be shifted up in voltage (single supply/single ended).



Digital Phase Detector

A simple digital phase detector is an XOR gate with logic low output ($V_{\phi} = 0V$) and the logic high output ($V_{\phi} = V_{DD}$). An example below shows the PLL is in the locked condition where V_{in} and V_{osc} are two phase-shifted periodic square-wave signals at the same frequency $f_{osc} = f_{in} = \frac{1}{T_{in}}$, and with 50% duty ratios. The output of the phase detector is a periodic square-wave signal $V_{\phi}(t)$ at the frequency $2f_{in}$, and with the duty ratio D_{ϕ} that depends on the phase difference $\phi(t) = [\phi_{osc}(t) - \phi_{in}(t)]$ between $V_{in} \text{ and } V_{osc} \rightarrow D_{\phi} = \frac{\Phi}{\pi}$ (for XOR)

The dc component V_{φ} of the phase detector output can be found easily as the average of $V_{\phi}(t)$ over a period $\frac{T_{in}}{2}$

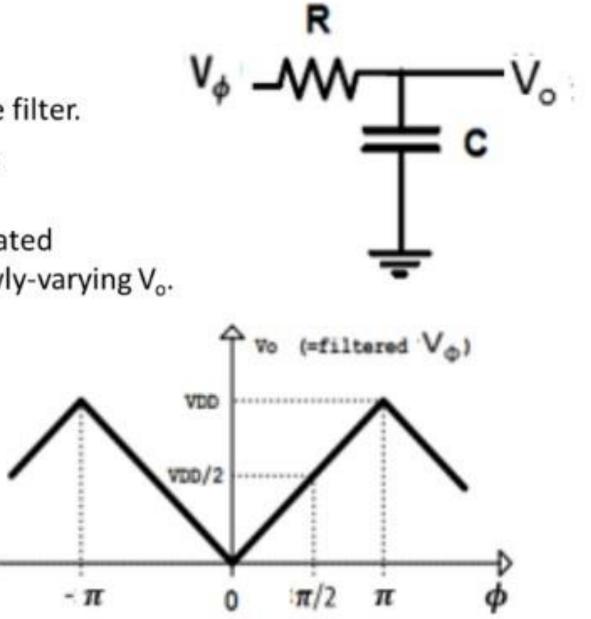
 \Rightarrow V_{ϕ} = $\frac{V_{DD}}{\pi} \phi = K_D \phi$ K_D is called PD gain (for XOR) where $K_D = \frac{V_{DD}}{\pi} \text{ volt/rad}$ for $0 \le \phi \le \pi$ The average output rise to $V_{out} = \frac{V_{DD}}{\pi} \Delta \Phi = 0 \rightarrow VDD$ when $\Delta \Phi$ goes from $0 \rightarrow \pi$. For $\Delta \Phi > \pi$, the average output begins to drop.

Loop Filter

The output V_b(t) of the phase detector is filtered by the low-pass loop filter. The purpose of the low-pass filter is to pass the dc and low-frequency portions of $V_{\phi}(t)$ and to attenuate high-frequency ac components at frequencies $2\pi f_{in}$. The simple RC filter has the transfer function:

$$F(s) = \frac{1}{1+s R C} = \frac{1}{1+s/\omega_p}$$

where $\omega_p = \frac{1}{R C}$ and $f_p = \frac{\omega_p}{2\pi}$ is the cut-off frequency of the

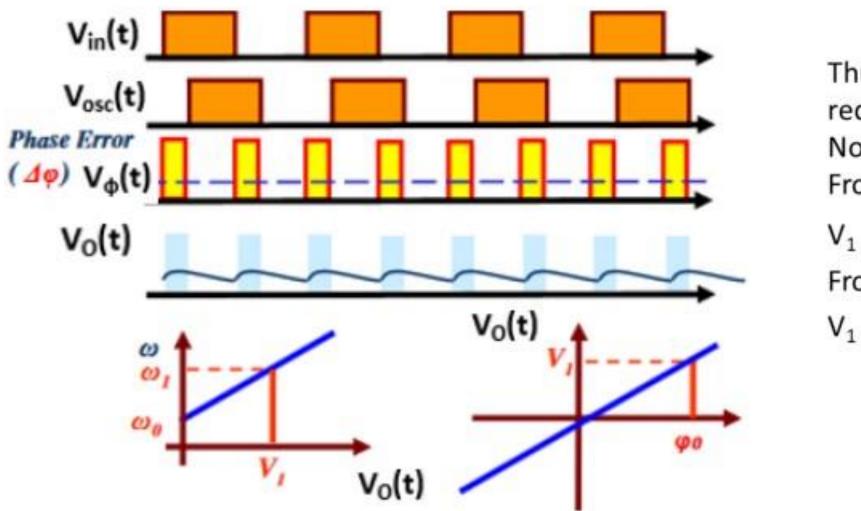

If $f_p << 2f_{in} \rightarrow$ the output of the filter V_{out} is approximately equal to the dc component V_{ϕ} of the phase detector output.

In practice, the high-frequency components are not completely eliminated and can be observed as high-frequency ac ripple around the dc or slowly-varying V_o.

In general, the filter output V_{out} as a function of the phase difference. Note that $V_{out} = 0$ if V_{in} and V_{osc} are in phase ($\phi = 0$), and that it reaches the maximum value $V_{out} = V_{DD}$ when the two signals are exactly out of phase ($\phi = \pi$).

For $0 \le \phi \le \pi$, V_o increases, and for $\phi > \pi$, V_o decreases. The characteristic of periodic in ϕ with period 2π .

The range $0 \le \phi \le \pi$ is the range where the PLL can operate in the locked condition.

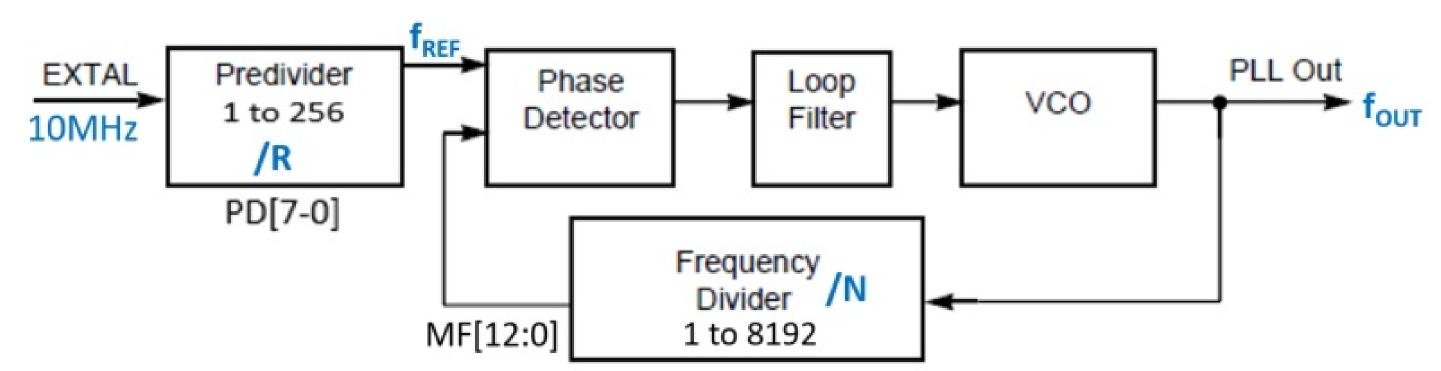


Voltage Controlled Oscillator (VCO)

In PLL applications, the VCO is treated as a linear, time-invariant system. To obtain an arbitrary output frequency (within the VCO tuning range), a finite V_{out} is required. Let's define $\phi_{osc} - \phi_{in} = \phi_{o}$. The XOR function produces an output pulse whenever there is a phase misalignment. Suppose that an output frequency ω_1 is needed. From the upper right figure, we see that a control voltage V₁ will be necessary to produce this output frequency. The phase detector can produce this V₁ only by maintaining a phase offset φ at its input. In order to minimize

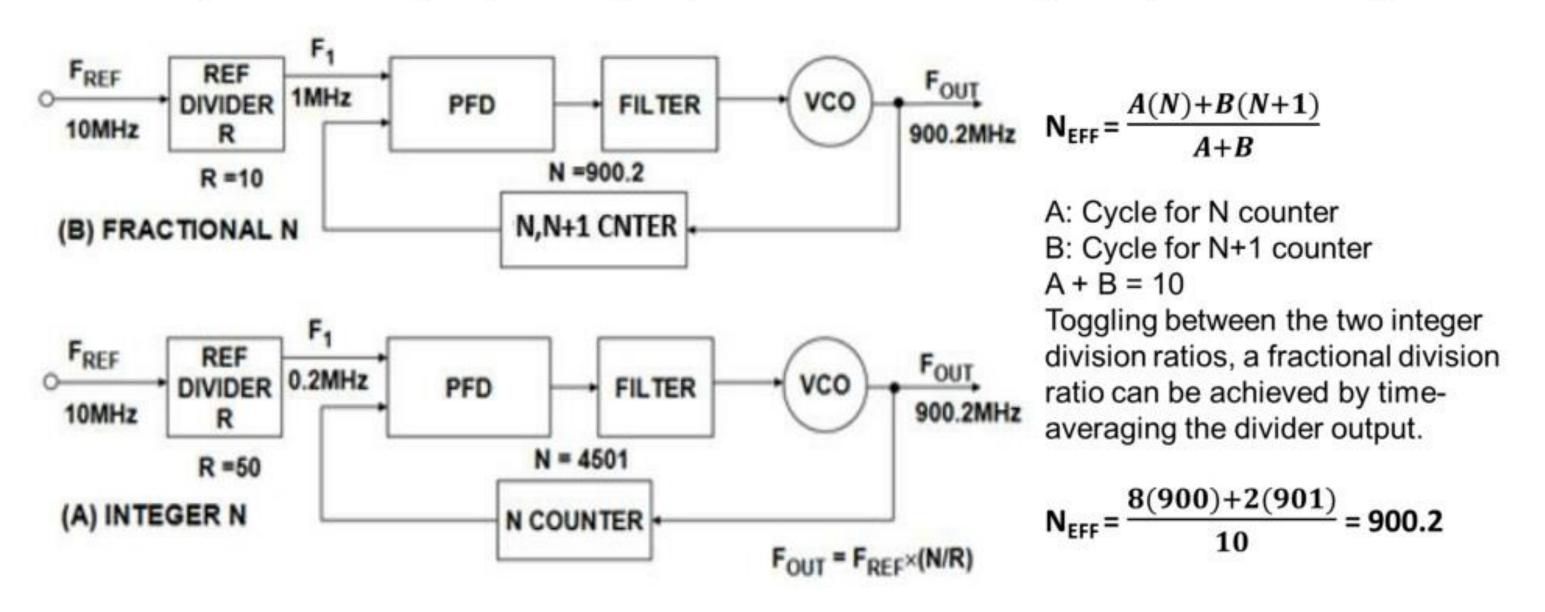
the required phase offset or error, the PLL loop gain, $K_D K_O$, should be maximized, since $\phi =$

Thus, a high loop gain K_pK_o is beneficial for reducing phase errors. Note:


From Phase detector:

$$\sum_{I} = K_{D} \phi \Rightarrow \phi = \frac{V_{1}}{K_{D}}$$

from VCO:
$$\sum_{I} = \frac{\omega_{1} - \omega_{0}}{K_{D}} \Rightarrow \phi = \frac{V_{1}}{K_{D}} = \frac{\omega_{1} - \omega_{0}}{K_{D}K_{D}}$$


- The resolution of the output frequency is determined by the reference frequency applied to the phase detector. Step size or frequency resolution - the smallest frequency increment possible.
- To obtain a stable low frequency source is not easy, because a quartz crystal oscillating in kHz region is quite bulky ٠ and not practical. A sensible approach is to take a good stable crystal-based high frequency source and an integer-N synthesizer to divide it down.

Fractional-N Synthesizer

Fractional-N allows the resolution at the PLL output to be reduced to small fractions of the PFD frequency as shown below, where the PFD input frequency is 1 MHz. It is possible to generate output frequencies with resolutions of 100s of Hz, while maintaining a high PFD frequency. As a result the N-value is significantly less than for integer-N.

References

 Albert D. Helfrick, William D. Cooper, "Modern Electronic Instrumentation and Measurement Techniques", Pearson, 1st Edition, 2016 (Unit IV-V).
 Sawhney A K., "Course in Electrical, Electronic Measurements and Instrumentation", Shree Hari Publications, 2021(Unit IV-V).
 Patranabis D, "Principles of Industrial Instrumentation", Mc-Graw Hill Education, 3rd Edition, 2017 (Unit IV-V).

Thank You

Redesigning Common Mind & Business Towards Excellence

Build an Entrepreneurial Mindset Through Our Design Thinking FrameWork