
SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

COURSE NAME : 23ITT101- PROBLEM SOLVING & C PROGRAMMING

I YEAR /I SEMESTER

Unit II – C PROGRAMMING BASICS

Topic : Looping Statements - Illustrative Programs

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

LOOP

• A loop statement allows us

to execute a statement or

group of statements multiple

times as long as a certain

condition is true.

General Format

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Types of Loop

•There are 3 types of Loop in C language,

namely:

• for loop

•while loop

•do while loop

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

for loop
(open ended / entry controlled loop)

• for loop is used to execute a set of statements repeatedly

until a particular condition is satisfied.

for (initialization; condition; increment/decrement)

{

statement_block;

}

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

nested for loop

• One for loop inside another for loop

for (initialization; condition; increment/decrement)

{

for (initialization; condition; increment/decrement)

{

statement;

}

}

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

while Loop
(Entry controlled loop)

variable initialization;

while(condition)

{

statements;

variable increment or decrement;

}

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

do...while loop
(Exit controlled loop)

do {

statement(s);

} while(condition);

• If the condition is true, the flow of control

jumps back, and the statement(s) in the loop

executes again.

• This process repeats until the given condition

becomes false.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Illustrative Programs:

Generate 10 natural numbers

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

while loop

#include <stdio.h>

int main()

{

printf("Using do-while loop:\n");

int i = 1;

do

{

printf("%d ", i);

i++;

} while (i <= 10);

printf("\n");

return 0;

}

#include <stdio.h>

int main()

{

printf("Using while loop:\n");

int i = 1;

while (i <= 10)

{

printf("%d ", i);

i++;

}

printf("\n");

return 0;

}

do...while loop

For loop

#include <stdio.h>

int main()

{

printf("Using for loop:\n");

for (int i = 1; i <= 10; i++)

{

printf("%d ", i);

}

printf("\n");

return 0;

}

#include <stdio.h>

int main()

{

printf("Using do-while loop:\n");

int i = 1;

do

{

printf("%d ", i);

i++;

} while (i <= 10);

printf("\n");

return 0;

}

do...while loop

Example
Nested for loop

#include<stdio.h>

void main()

{

int i,j;

for(i=1 ; i < 5 ; i ++)

{

printf(“\n”);

for(j= i ; j>0 ; j - -)

printf(“%d \t ”, j);

}

}

Output:

1
2 1
3 2 1
4 3 2 1

The Infinite Loop - for (;;)

• A loop becomes an infinite loop if a condition never becomes

false.

• The for loop is traditionally used for this purpose.

• Since none of the three expressions that form the 'for' loop are

required, you can make an endless loop by leaving the

conditional expression empty.

• When the conditional expression is absent, it is assumed to be

true.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

The Infinite Loop
#include <stdio.h>

int main() {

printf("Infinite for loop:\n");

for (;;)

{ // No initialization, condition, or increment

printf("This will run forever!\n");

}

return 0;

}

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Comparison - while loop and do-while loop

Aspect while Loop do-while Loop

Condition Check Before entering the loop

(entry controlled loop /pre -test loop)

After the loop body

(exit controlled loop / post-test loop)

Execution Guarantee May not execute if the condition is false

initially

Executes at least once, even if the

condition is false initially

Loop Entry Loops only if the condition is true from the

start

Loops at least once, regardless of

condition

Syntax while (condition) { // code } do { // code } while (condition);

Typical Use Case When you want to check the condition before

execution

When you want the loop to execute at

least once

Example while (x < 5) { printf("%d", x); x++; } do { printf("%d", x); x++; } while (x < 5);

Behavior if Condition is False

Initially

The loop may not run at all if the condition is

false

The loop will execute at least once, even

if the condition is false

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Comparison - for and while loop

Aspect for Loop while Loop

Purpose Typically used when the number of iterations is

known beforehand.

Typically used when the number of iterations is

not known.

Condition Check Condition is checked at the start of each

iteration.

Condition is checked before each iteration.

Initialization Initialization is done in the loop itself. Initialization must be done before the loop

starts.

Update Update (e.g., increment) is done in the loop

itself.

Update must be handled inside the loop body.

Syntax for (initialization; condition; update) { // code } while (condition) { // code }

Typical Use Case When the number of iterations is known in

advance (e.g., for counting).

When the number of iterations is not known,

and the loop depends on a condition.

Example for (int i = 0; i < 5; i++) { printf("%d", i); } int i = 0; while (i < 5) { printf("%d", i); i++; }

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Unconditional control statements
Unconditional control statements can be powerful but should be used judiciously

to maintain code readability.

goto:

Use only when absolutely necessary to avoid unstructured code.

break:

Used to exit loops or switch cases.

continue:

Skips the rest of the loop body for the current iteration.

return:

Exits a function, optionally returning a value.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

goto statement

• The goto statement is a jump

statement which is sometimes

also referred to as

unconditional jump statement.

• The goto statement can be

used to jump from anywhere

to anywhere within a function.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

THE GOTO STATEMENT

• The ‘goto’ statement helps to branch unconditionally from one

point to another in the program.

• The goto requires a label in order to identify the place where the

branch is to be made.

• A label is any valid variable name and must be followed by a

colon.

• The label is placed immediately before the statement when the

control is to be transferred.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

THE GOTO STATEMENT
UNCONDITIONAL branching

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Syntax:

goto label;

.

.

.

.

.

.

label:

statement;

THE GOTO STATEMENT

• The label: can be anywhere in the program before or after the

goto label; statement.

• When a goto statement is encountered, the flow of control will

jump to the statement immediately following the label in the goto

statement.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

THE GOTO STATEMENT

Backward jump:

• If the label is before the statement goto label; a loop will be

formed and some statements will be executed repeatedly.

Such a jump is known as a backward jump.

Forward jump:

• If the label is placed after the goto label; some statements

will be skipped and the jump is known as a forward jump.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

THE GOTO STATEMENT
/*To print numbers from 1 to 10 using
goto statement*/

#include <stdio.h>

int main()

{

int number;

number=1;

repeat:

printf("%d\n",number);

number++;

if(number<=10)

goto repeat;

return 0;

}

Output

1

2

3

4

5

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

#include <stdio.h>

int main() {

int x = 5;

// Check condition

if (x == 5) {

goto forward_jump; // Jump forward to the 'forward_jump' label

}

// This code will be skipped due to the forward jump

printf("This will be skipped.\n");

forward_jump: // Label to jump to

printf("This message is printed after the forward jump.\n");

return 0;

}

Output : This message is printed after the forward jump.

THE GOTO STATEMENT
#include <stdio.h>

int main() {

int i = 5; // Start with 5 (first number in reverse order)

backward_jump: // Label to jump to

if (i >= 1) { // Check if i is greater than or equal to 1

printf("%d\n", i); // Print the current number

i--; // Decrement i to the next number in reverse order

goto backward_jump; // Jump back to backward_jump if condition is
true

}

return 0;

}

Output

5

4

3

2

1

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

break statement

• The break statement in C programming has the following two

usages

• When a break statement is encountered inside a loop, the loop

is immediately terminated and the program control resumes at

the next statement following the loop.

• It can be used to terminate a case in the switch statement

(covered in the next chapter).

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

break statement

• Syntax

break;

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

continue

• Instead of forcing termination, it forces the next

iteration of the loop to take place, skipping any

code in between.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

continue

•Syntax

continue;

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

break statement
#include <stdio.h>

int main() {

for (int i = 1; i <= 10; i++)

{

if (i == 5)

{ break;

// Exit the loop when i equals 5

}

printf("%d ", i);

}

return 0;

}

#include <stdio.h>

int main() {

for (int i = 1; i <= 10; i++) {

if (i % 2 == 0)

{ continue;

// Skip even numbers

}

printf("%d ", i);

}

return 0;

}

Continue statement

goto statement

#include <stdio.h>

int main() {

int x = 0;

printf("Before the label.\n");

goto skip;

// Jump to the label "skip"

printf("This will be skipped.\n");

skip:

printf("After the label.\n");

return 0;

}

#include <stdio.h>

int add(int a, int b)

{

return a + b; // Return the sum

}

int main()

{

int result = add(3, 7);

printf("The sum is: %d\n", result);

return 0;

}

return statement

Summary

S.No Loop Type & Description

1 while loop

Repeats a statement or group of statements while a given condition is

true. It tests the condition before executing the loop body

2 for loop

Executes a sequence of statements multiple times and abbreviates

the code that manages the loop variable.

3 do --- while loop

It is more like a while statement, except that it tests the condition at

the end of the loop body.

4 nested loop

can use one or more loops inside any other while, for, or do..while

loop.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

