
SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

COURSE NAME : 23ITT101- PROBLEM SOLVING & C PROGRAMMING

I YEAR /I SEMESTER

Unit II – ARRAYS AND STRINGS

Topic : String

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Fundamentals of Strings and Characters

• Characters

• Building blocks of programs

• Every program is a sequence of meaningfully grouped

characters

• Character constant

• An int value represented as a character in single quotes

• 'z' represents the integer value of z

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Fundamentals of Strings and Characters

• Strings

• Series of characters treated as a single unit

• Can include letters, digits and special characters (*, /, $)

• String literal (string constant) - written in double quotes

• "Hello"

• Strings are arrays of characters

• String a pointer to first character

• Value of string is the address of first character

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

String and Character Array

String declarations

Declare as a character array or a variable of type char *

char color[] = "blue";

char *colorPtr = "blue";

Remember that strings represented as character arrays end with '\0'

color has 5 elements

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

String and Character Array

Inputting strings

Use scanf

scanf("%s", word);

//Copies input into word[]

Do not need & (because a string is a pointer)

Remember to leave room in the array for '\0'

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Character Handling Library

Character handling library

• Includes functions to perform useful tests and manipulations of

character data

• Each function receives a character (an int) or EOF as an argument

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Character Handling Library <ctype.h>

Prototype Description

int isdigit(int c) Returns true if c is a digit and false otherwise.

int isalpha(int c) Returns true if c is a letter and false otherwise.

int isalnum(int c) Returns true if c is a digit or a letter and false otherwise.

int isxdigit(int c) Returns true if c is a hexadecimal digit character and false otherwise.

int islower(int c) Returns true if c is a lowercase letter and false otherwise.

int isupper(int c) Returns true if c is an uppercase letter; false otherwise.

int tolower(int c) If c is an uppercase letter, tolower returns c as a lowercase letter. Otherwise, tolower

returns the argument unchanged.

int toupper(int c) If c is a lowercase letter, toupper returns c as an uppercase letter. Otherwise, toupper

returns the argument unchanged.

int isspace(int c) Returns true if c is a white-space character—newline ('\n'), space (' '), form feed

('\f'), carriage return ('\r'), horizontal tab ('\t'), or vertical tab ('\v')—and

false otherwise

int iscntrl(int c) Returns true if c is a control character and false otherwise.

int ispunct(int c) Returns true if c is a printing character other than a space, a digit, or a letter and false

otherwise.

int isprint(int c) Returns true value if c is a printing character including space (' ') and false

otherwise.

int isgraph(int c) Returns true if c is a printing character other than space (' ') and false otherwise.

Example

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

#include <stdio.h>

int main() {

char str[100];

printf("Enter a value :");

gets(str);

printf("\nYou entered: ");

puts(str);

return 0;

}

Output:

Enter a value : this is test

You entered: this is test

Examples

Strings are defined as an array of characters.

For example

 The string "hello world" contains 12 characters including '\0' character.

 Which is automatically added by the compiler at the end of the string.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Declaring and Initializing a string variables

There are different ways to initialize a character array variable.

Declaring a string is as simple as declaring a one dimensional array.

char str_name[size];

char name[13] = "StudyTonight"; // valid character array

char name[10] = {'L','e','s','s','o','n','s','\0'}; // valid initialization

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Remember that when you initialize a character array by listing all of its

characters separately then you must supply the '\0' character explicitly.

Some examples of illegal initialization of character array are,

char ch[3] = "hell"; // Illegal

char str[4];

str = "hell"; // Illegal

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

A string can be initialized in different ways.

1. char str[] = "GeeksforGeeks";

2. char str[50] = "GeeksforGeeks";

3. char str[] = {'G','e','e','k','s','f','o','r','G','e','e','k','s','\0'};

4. char str[14] = {'G','e','e','k','s','f','o','r','G','e','e','k','s','\0'};

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

#include<stdio.h>

int main()

{

// declare and initialize string

char str[] = "Geeks";

// print string

printf("%s",str);

return 0;

}

Output:

Geeks

#include<stdio.h>

int main()

{ // declaring string

char str[50];

// reading string

scanf("%s",str);

// print string

printf("%s",str);

return 0;

}

Output:

Geeks

C program to read strings

String Input and Output

Input function scanf() can be used with %s format specifier to read a string input

from the terminal.

But there is one problem with scanf() function, it terminates its input on the first

white space it encounters.

To read an input string "Hello World" using scanf() function, it will only read Hello

and terminate after encountering white spaces.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Read string in C using gets()

The gets() function is defined inside “stdio.h” library.

The gets() function takes the start address of an area of memory suitable to hold the input as

a single parameter.

The gets() function read a line (terminated by a newline character \n) from the input stream

and make a null-terminates string out of it.

It reads data until it finds a newline or end-of-file. the gets() function declaration is,

char* gets(char* strptr);

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

//using scanf()

#include<stdio.h>

#include<string.h>

void main()

{

char str[20];

printf("Enter a string");

//scanning the whole string, including the white spaces

scanf("%[^\n]", &str);

printf(" The Entered string : %s", str);

}

//using the gets() function.

#include<stdio.h>
#include<string.h>
void main()
{
char str[20];
printf("Enter a string");
gets(str);
printf(“");
printf(" The Entered string : %s", str);

}

To read character string with white spaces

Output:

Enter a string: Know Program C language

The Entered string : Know Program C language

Read string in C using fgets()

The fgets() function is also defined inside “stdio.h” library.

It also takes a line (terminated by a newline) from the input stream and makes a null-

terminates string out of it. The fgets() function can get input from a file or standard input.

 The fgets() function declaration is,

char* fgets(char* strptr, int length, FILE * stream);

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Comparison between gets() and fgets()

Aspect gets() fgets()

Safety
Unsafe, no bounds checking, can lead

to buffer overflow.

Safe, reads up to the specified limit,

preventing overflow.

Newline Character
Does not store the newline character

(\n).

Stores the newline character if there

is space in the buffer.

Buffer Overflow
Can cause buffer overflow if input

exceeds buffer size.

Does not cause buffer overflow as it

limits the number of characters read.

Termination
Stops reading at the first newline (\n) or

EOF.

Stops reading at the first newline (\n),

EOF, or the specified limit.

End of Input

Can cause undefined behavior if the

input exceeds buffer size.

Returns NULL on error or if EOF is

encountered before reading any

characters.

Return Value
Returns the string on success or NULL

on failure.

Returns the string on success or

NULL on failure.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Display string in C

puts() or fputs() or printf() with %s format specifier.

puts() - It terminates the line with a new line, ‘\n’.

The puts() function change ‘\0’ to a new line but fputs() function doesn’t change it.

int puts(const char* strptr);

int fputs(const char* strptr, FILE* stream);

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

/*Display string in C using printf() with
%s format code*/

#include<stdio.h>
int main()
{

char str[100];
printf("Enter a string: ");
fgets(str, sizeof(str), stdin);
printf("%s",str);
return 0;

}

Output:-
Enter a string: Know Program
Know Program

//Demonstrating fscanf() and fprintf() function

#include<stdio.h>

int main()

{

char str[10];

printf("Enter a string: ");

fscanf(stdin, "%s", str);

fprintf(stdout, "String = %s", str);

return 0;

}

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

String Input-Output using fscanf() and fprintf() functions

Each C program has three input-output streams:- stdin, stdout, and stderr.

The input stream is called standard-input (stdin), the output stream is called standard-

output (stdout), and the side stream of output characters from errors is called the

standard error (stderr).

Internally they occupy file descriptors 0, 1, and 2 respectively. The fprintf() sends

formatted output to a stream and fscanf() scans and formats input from a stream.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Aspect scanf() gets()

Input Type
Used for reading formatted input (e.g., strings,

integers, floats).

Used for reading a whole line of text, including spaces.

Whitespace

Handling

Stops reading at the first whitespace (space, tab,

newline) for strings.

Reads entire line, including spaces.

Safety

Can cause issues if used incorrectly, particularly with

%s (it can lead to buffer overflow if the buffer is not

large enough).

Unsafe because it does not check buffer size, leading to

buffer overflows.

Newline Character
Does not store newline characters (\n) in the buffer. Does not store the newline character (\n).

Common Use
Commonly used for formatted input, like reading

specific data types (e.g., integers, strings).

Used for reading a complete line of text, but should be

avoided due to safety issues.

Return Value

Returns the number of successfully scanned items.

Returns EOF on error or end of input.

Returns the string on success, NULL on error.

Buffer Overflow
Can lead to buffer overflow if the input exceeds the

size of the variable when using %s.

Can lead to buffer overflow because it doesn't check the

buffer size.

Deprecation
Not deprecated, but must be used carefully, especially

with %s.

Deprecated in modern C standards (C11) due to security

risks.

Aspect gets() puts()

Purpose
Reads a line of input from the user. Prints a string to the output.

Input/Output
Input: Reads a string from the user. Output: Prints a string to the

screen.

Buffer Overflow
Unsafe: Can cause buffer overflow

if input exceeds buffer size.

No risk of buffer overflow (because

it only prints, does not read).

Newline Handling
Does not store the newline

character (\n) in the buffer.

Automatically adds a newline after

printing the string.

Return Value
Returns the string (str) on success,

or NULL on error.

Returns a non-negative integer on

success, or EOF on error.

Deprecation
Deprecated in C11 because of

security risks.

Not deprecated and is safe to use.

Typical Use

Used for reading input from the

user, typically without any format

restrictions.

Used for printing output, often to

display strings with a newline.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

