

AN AUTONOMOUS INSTITUTION

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

TOPIC: 3.2 – PARTIAL DERIVATIVES

A partial derivative is the rate at which a multivariable function changes with respect to one of its variables, while keeping all other variables constant. For a function $f(x,y,z,\dots)$, the partial derivative with respect to x is denoted as $\frac{\partial f}{\partial x}$ and represents how f changes as x varies, treating y,z,\dots as constants. It is a key concept in calculus used to analyze functions with multiple inputs, with applications in optimization, physics, engineering, and machine learning.

Notation

The partial derivative of f with respect to x is commonly written as:

- $\frac{\partial f}{\partial x}$
- f_x
- $\partial_x f$

Similarly, for the other variables like y or z, we use $\frac{\partial f}{\partial y}$ or $\frac{\partial f}{\partial z}$.

Applications

Partial derivatives are used in:

- Optimization (finding maxima and minima of functions)
- Differential equations
- · Physics and engineering (heat, wave, and fluid dynamics)
- Machine learning and data science (gradient-based algorithms)

AN AUTONOMOUS INSTITUTION

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

Problems based on Partial derivatives

1. If
$$u = (x-y)(y-z)(z-x)$$
, then show that

$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$$

Given $u = (x-y)(y-z)(z-x)$

$$\frac{\partial u}{\partial x} = (y-z)\left[(x-y)(1) + (z-x)(1)\right]$$

$$= -(x-y)(y-z) + (y-z)(z-x)$$

$$\frac{\partial u}{\partial y} = (z-x)\left[(x-y)(1) + (y-z)(-1)\right]$$

$$\frac{\partial u}{\partial y} = (z-x) \left[(x-y)(1) + (y-z)(-1) \right]$$

$$= (x-y)(z-x) - \phi (y-z)(z-x)$$

$$\frac{\partial u}{\partial z} = (x-y) \left[(y-z)(+1) + (z-x)(-1) \right]$$

$$= (x-y)(y-z) - (x-y)(z-x)$$

$$\frac{\partial u}{\partial z} + \frac{\partial u}{\partial z} + \frac{\partial u}{\partial z} = 0$$

Euler's Theorem for homogeneous function

If u is a homogeneous function of degree n in x and y, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = nu$

AN AUTONOMOUS INSTITUTION

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

1) If
$$u = \sin^{-1}\left[\frac{x^2 - y^2}{x + y}\right]$$
, then prove that $x = \frac{\partial u}{\partial x} + y = \frac{\partial u}{\partial y} = 2 \tan u$.

Let $f(x,y) = \sin u = \frac{x^2 - y^2}{x + y}$

$$f(tx,ty) = \frac{t^2x^2 - t^2y^2}{tx + ty} = t^2 f(x,y)$$

$$f(x,ty) = \frac{t^2x^2 - t^2y^2}{tx + ty} = t^2 f(x,y)$$

$$f(x,y) = \frac{t^2x^2 - t^2y^2}{x + y} = t^2 f(x,y)$$

$$f(x,y) = \frac{t^2x^2 - t^2y^2}{x + y} = t^2 f(x,y)$$

$$f(x,y) = \frac{t^2x^2 - y^2}{x + y} = t^2 f(x,y)$$

$$f(x,y) = \frac{t^2x^2 - y^2}{x + y} = t^2 f(x,y)$$

$$f(x,y) = \frac{t^2x^2 - y^2}{x + y} = t^2 f(x,y)$$

$$f(x,y) = \frac{t^2x^2 - y^2}{x + y} = t^2 f(x,y)$$

$$f(x,y) = \frac{t^2x^2 - y^2}{x + y} = t^2 f(x,y)$$

$$f(x,y) = \frac{t^2x^2 - y^2}{x + y} = t^2 f(x,y)$$

$$f(x,y) = \frac{t^2x^2 - y^2}{x + y} = t^2 f(x,y)$$

$$f(x,y) = \frac{t^2x^2 - y^2}{x + y} = t^2 f(x,y)$$

$$f(x,y) = \frac{t^2x^2 - y^2}{x + y} = t^2 f(x,y)$$

$$f(x,y) = \frac{t^2x^2 - y^2}{x + y} = t^2 f(x,y)$$

$$f(x,y) = \frac{t^2x^2 - y^2}{x + y} = t^2 f(x,y)$$

$$f(x,y) = \frac{t^2x^2 - y^2}{x + y} = t^2 f(x,y)$$

$$f(x,y) = \frac{t^2x^2 - y^2}{x + y} = t^2 f(x,y)$$

$$f(x,y) = \frac{t^2x^2 - y^2}{x + y} = t^2 f(x,y)$$

$$f(x,y) = \frac{t^2x^2 - y^2}{x + y} = t^2 f(x,y)$$

$$f(x,y) = \frac{t^2x^2 - y^2}{x + y} = t^2 f(x,y)$$

$$f(x,y) = \frac{t^2x^2 - y^2}{x + y} = t^2 f(x,y)$$

$$f(x,y) = \frac{t^2x^2 - y^2}{x + y} = t^2 f(x,y)$$

$$f(x,y) = \frac{t^2x^2 - t^2y^2}{x + y} = t^2 f(x,y)$$

$$f(x,y) = \frac{t^2x^2 - t^2y^2}{x + y} = t^2 f(x,y)$$

$$f(x,y) = \frac{t^2x^2 - t^2y^2}{x + y} = t^2 f(x,y)$$

$$f(x,y) = \frac{t^2x^2 - t^2y^2}{x + y} = t^2 f(x,y)$$

$$f(x,y) = \frac{t^2x^2 - t^2y^2}{x + y} = t^2 f(x,y)$$

$$f(x,y) = \frac{t^2x^2 - t^2y^2}{x + y} = t^2 f(x,y)$$

$$f(x,y) = \frac{t^2x^2 - t^2y^2}{x + y} = t^2 f(x,y)$$

$$f(x,y) = \frac{t^2x^2 - t^2y^2}{x + y} = t^2 f(x,y)$$

$$f(x,y) = \frac{t^2x^2 - t^2y^2}{x + y} = t^2 f(x,y)$$

$$f(x,y) = \frac{t^2x^2 - t^2y^2}{x + y} = t^2 f(x,y)$$

$$f(x,y) = \frac{t^2x^2 - t^2y^2}{x + y} = t^2 f(x,y)$$

$$f(x,y) = \frac{t^2x^2 - t^2y^2}{x + y} = t^2 f(x,y)$$

$$f(x,y) = \frac{t^2x^2 - t^2y^2}{x + y} = t^2 f(x,y)$$

$$f(x,y) = \frac{t^2x^2 - t^2y^2}{x + y} = t^2 f(x,y)$$

$$f(x,y) = \frac{t^2x^2 - t^2y^2}{x + y} = t^2 f(x,y)$$

$$f(x,y) = \frac{t^2x^2 - t^2y^2}{x + y} = t^2 f(x,y)$$

$$f(x,y) = \frac{t^2x^2 - t^2y^2}{x + y} = t^2 f(x,$$

Here
$$f = s \dot{m} u$$

 $s u \dot{b} \cdot \dot{m} (1)$,
 $\chi \frac{\partial}{\partial x} (s \dot{m} u) + y \frac{\partial}{\partial y} (s \dot{m} u) = 2 s \dot{m} u$
 $\chi \left[c \sigma s u \frac{\partial u}{\partial x} \right] + y \left[c \sigma s u \frac{\partial u}{\partial y} \right] = 2 s \dot{m} u$.
 $\chi \left[c \sigma s u \frac{\partial u}{\partial x} \right] + y \left[c \sigma s u \frac{\partial u}{\partial y} \right] = 2 s \dot{m} u$.

AN AUTONOMOUS INSTITUTION

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

2) If
$$u = \frac{\pi}{y} + \frac{y}{x} + \frac{z}{x}$$
, then find $x = \frac{3u}{3x} + \frac{3u}{3y} + \frac{3u}{3z}$ where $\frac{z}{3z} = \frac{3u}{3z} + \frac{3u}{3z} + \frac{3u}{3z} = \frac{3u}{3z} + \frac{3u}{3z} = \frac{3u}{3z} + \frac{3u}{3z} = \frac{3u}{3z} = \frac{3u}{3z} + \frac{3u}{3z} = \frac{3u$

Given
$$u(x,y,z) = \frac{x}{y} + \frac{y}{z} + \frac{z}{x}$$

 $u(tx,ty,tz) = \frac{tx}{ty} + \frac{ty}{tz} + \frac{tz}{tx}$

i. u is a homogeneous function of a, y, ₹

in degree 0.

By Euler's theorem,

$$3u \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = nu$$

4) If
$$u = cos^{-1} \left[\frac{\alpha + y}{\sqrt{\alpha} + \sqrt{y}} \right]$$
, then prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = -\frac{1}{2} \cot u$.

Let
$$f(x,y) = \cos u = \frac{x+y}{\sqrt{x}+\sqrt{y}}$$

 $f(tx,ty) = \frac{tx+ty}{\sqrt{tx}+\sqrt{ty}} = t^{\frac{1}{2}} f(x,y)$

 \Rightarrow f is a homogeneous function of degree $\frac{1}{2}$ in x and y.

AN AUTONOMOUS INSTITUTION

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

-. By Euler's theorem.

$$x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = nf = \frac{1}{2}f \longrightarrow 0$$

Here $f = \cos u$, sub in 0 .

$$x \frac{\partial}{\partial x} (\cos u) + y \frac{\partial}{\partial y} (\cos u) = \frac{1}{2} \cos u$$

$$x \left[-\sin u \frac{\partial u}{\partial x} \right] + y \left[-\sin u \frac{\partial u}{\partial y} \right] = \frac{1}{2} \cos u$$

$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = -\frac{1}{2} \frac{\cos u}{\sin u}$$

$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = -\frac{1}{2} \frac{\cos u}{\sin u}$$

$$= -\frac{1}{2} \cot u$$

If
$$u = (x^2 + y^2 + z^2)^{-1/2}$$
, then find the value of $\frac{\partial u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$.

Given $u = (x^2 + y^2 + z^2)^{-1/2}$

$$\frac{\partial u}{\partial x} = -\frac{1}{2}(x^2 + y^2 + z^2)^{-3/2}(2x)$$

$$\frac{\partial u}{\partial x} = -x(x^2 + y^2 + z^2)^{-3/2}$$

$$\frac{\partial^{2} u}{\partial x^{2}} = -\left[x \left(-\frac{3}{2} \right) \left(x^{2} + y^{1} + z^{2} \right)^{-\frac{5}{2}} (2x) \right.$$

$$+ \left(x^{2} + y^{2} + z^{2} \right)^{-\frac{3}{2}} \right]$$

$$\frac{\partial^{2} u}{\partial x^{2}} = 3x^{2} \left(x^{2} + y^{2} + z^{2} \right)^{-\frac{5}{2}} - \left(x^{2} + y^{2} + z^{2} \right)^{-\frac{3}{2}}$$

$$\to 0$$

AN AUTONOMOUS INSTITUTION

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

111,
$$\frac{\partial^{2} u}{\partial y^{2}} = 3y^{2} (x^{2} + y^{2} + z^{2})^{-5/2} - (x^{2} + y^{2} + z^{2})^{-3/2}$$

$$\frac{\partial^{2} u}{\partial z^{2}} = 3z^{2} (x^{2} + y^{2} + z^{2})^{-5/2} - (x^{2} + y^{2} + z^{2})^{-3/2}$$

$$\frac{\partial^{2} u}{\partial z^{2}} = 3z^{2} (x^{2} + y^{2} + z^{2})^{-5/2} - (x^{2} + y^{2} + z^{2})^{-3/2}$$

$$\frac{\partial^{2} u}{\partial z^{2}} + \frac{\partial^{2} u}{\partial y^{2}} + \frac{\partial^{2} u}{\partial z^{2}}$$

$$= (x^{2} + y^{2} + z^{2})^{-5/2} [3x^{2} + 3y^{2} + 3z^{2}] - 3(x^{2} + y^{2} + z^{2})^{-3/2}$$

$$\frac{\partial^{2}u}{\partial y^{2}} = 3y^{2} \left(x^{2} + y^{2} + z^{2}\right)^{-\frac{5}{2}} - \left(x^{2} + y^{2} + z^{2}\right)^{-\frac{3}{2}}$$

$$\frac{\partial^{2}u}{\partial z^{2}} = 3z^{2} \left(x^{2} + y^{2} + z^{2}\right)^{-\frac{5}{2}} - \left(x^{2} + y^{2} + z^{2}\right)^{-\frac{3}{2}}$$

$$\frac{\partial^{2}u}{\partial z^{2}} + \frac{\partial^{2}u}{\partial y^{2}} + \frac{\partial^{2}u}{\partial z^{2}}$$

$$= \left(x^{2} + y^{2} + z^{2}\right)^{-\frac{5}{2}} \left[3x^{2} + 3y^{2} + 3z^{2}\right] - 3\left(x^{2} + y^{2} + z^{2}\right)^{-\frac{3}{2}}$$

$$= 3\left(x^{2} + y^{2} + z^{2}\right)\left(x^{2} + y^{2} + z^{2}\right)^{-\frac{5}{2}} - 3\left(x^{2} + y^{2} + z^{2}\right)^{-\frac{3}{2}}$$

$$= 3\left(x^{2} + y^{2} + z^{2}\right)^{-\frac{3}{2}} - 3\left(x^{2} + y^{2} + z^{2}\right)^{-\frac{3}{2}}$$

$$= 3\left(x^{2} + y^{2} + z^{2}\right)^{-\frac{3}{2}} - 3\left(x^{2} + y^{2} + z^{2}\right)^{-\frac{3}{2}}$$

$$= 0$$