

AN AUTONOMOUS INSTITUTION

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

TOPIC: 3.6 – PROBLEMS ON JACOBIAN

2) Find the Jacobian 3	$\partial(x, y, z)$ of the $\partial(x, \omega, \phi)$
transformation x = v sina cosp, y = v since sing	
$Z = \gamma cos \omega .$	
Given x = rsince cos p	
$\frac{\partial x}{\partial y} = x \cos \alpha \cos \phi$ $\frac{\partial y}{\partial x} = x \cos \alpha \cos \phi$	$\frac{\partial x}{\partial \phi} = -\gamma \sin \omega \sin \phi$
y = r since sin \$	Z=YCOSC
by = since sin \$	$\frac{\partial z}{\partial r} = cosce$
$\frac{\partial y}{\partial \omega} = r \cos \omega \sin \phi$	$\frac{\partial z}{\partial \omega} = -\gamma \sin \omega$
$\frac{\partial \Psi}{\partial \phi} = \gamma \sin \omega \cos \phi$	$\frac{\partial z}{\partial \phi} = 0$

AN AUTONOMOUS INSTITUTION

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

$$\begin{aligned} \int acobian \ J &= \left| \begin{array}{c} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \omega} & \frac{\partial x}{\partial \phi} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \omega} & \frac{\partial y}{\partial \phi} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \omega} & \frac{\partial z}{\partial \phi} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \omega} & \frac{\partial z}{\partial \phi} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \omega} & \frac{\partial z}{\partial \phi} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \phi} & \frac{\partial z}{\partial \phi} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \phi} & \frac{\partial z}{\partial \phi} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \phi} & \frac{\partial z}{\partial \phi} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \phi} \\ \frac$$

AN AUTONOMOUS INSTITUTION

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

$$= r^{2} \sin \alpha \cos^{2} \alpha \left[\cos^{2} \phi + \sin^{2} \phi \right]$$

$$+ r^{2} \sin^{3} \alpha \left[\cos^{2} \phi + \sin^{2} \phi \right]$$

$$= r^{2} \sin \alpha \cos^{2} \alpha + r^{2} \sin^{3} \alpha$$

$$= r^{2} \sin \alpha \left[\cos^{2} \alpha + \sin^{2} \phi \right] = r^{2} \sin \alpha$$

$$= r^{2} \sin \alpha \left[\cos^{2} \alpha + \sin^{2} \phi \right] = r^{2} \sin \alpha$$

$$(\pi \sin x = uv) \quad y = \frac{u}{v} \quad Vun \quad fm d \quad \frac{\partial(x, y)}{\partial(u, v)}.$$

$$(\pi \sin x = uv) \quad y = \frac{u}{v} \quad \frac{\partial y}{\partial u} = \frac{1}{v}$$

$$\frac{\partial x}{\partial v} = u \quad \frac{\partial y}{\partial v} = -\frac{u}{v^{2}}$$

$$\frac{\partial(x, y)}{\partial(u, v)} = \left| \frac{\partial x}{\partial u} \quad \frac{\partial x}{\partial v} \right| = \left| v \quad u \right|$$

$$\frac{\partial y}{\partial u} \quad \frac{\partial y}{\partial v} = -\frac{u}{v^{2}}$$

$$= -\frac{u}{v} - \frac{u}{v} = -\frac{2u}{v}$$

AN AUTONOMOUS INSTITUTION

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

(8) If
$$u = 2xy$$
, $v = x - y$ and $x = r\cos \alpha$,
 $y = r \sin \alpha$. Evaluati $\frac{\Im(u, v)}{\Im(r, \alpha)}$ without usual
substitution.
Given $u = 2xy$, $v = x^2 - y^2$
 $\frac{\Im u}{\Im x} = 2y$, $\frac{\Im v}{\Im x} = 2y$
 $\frac{\Im u}{\Im y} = 2x$, $\frac{\Im v}{\Im x} = -2y$
 $\Im = r \cos \alpha$, $\frac{\Im y}{\Im x} = -2y$
 $\Im = -r \sin \alpha$, $\frac{\Im y}{\Im x} = r \cos \alpha$
 $\frac{\Im y}{\Im \alpha} = -r \sin \alpha$

AN AUTONOMOUS INSTITUTION

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

$$\frac{\partial(u,v)}{\partial(r,\omega)} = \frac{\partial(u,v)}{\partial(x,y)} \frac{\partial(x,y)}{\partial(r,\omega)}$$

$$= \left| \frac{\partial u}{\partial x} \frac{\partial u}{\partial y} \right| \left| \frac{\partial x}{\partial r} \frac{\partial x}{\partial \omega} \right|$$

$$= \left| \frac{\partial v}{\partial x} \frac{\partial v}{\partial y} \right| \left| \frac{\partial y}{\partial r} \frac{\partial y}{\partial \omega} \right|$$

$$= \left| \frac{2y}{2x} - \frac{2y}{2x} \right| \left| \frac{\cos \omega - r \sin \omega}{\sin \omega - r \sin \omega} \right|$$

$$= \left(-4y^2 - 4r^2 \right) \left(r \cos^2 \omega + r \sin^2 \omega \right)$$

$$= -4 \left(x^2 + y^2 \right) \cdot r$$

$$= -4r \cdot r^2 = -4r^3$$