

AN AUTONOMOUS INSTITUTION

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

TOPIC:3.7- MAXIMA AND MINIMA OF FUNCTIONS OF TWO VARIABLES

(a)Maximum value

f(a, b) is a maximum value of f(x, y), if there exists some

neighbourhood of the point (a, b) such that for every point (a + h, b + k) of the neighbourhood.

$$f(a, b) > f(a + h, b + k)$$

(b) Minimum value

f(a, b) is a minimum value of f(x, y), if there exists some neighborhood

of the point (a, b) such that for every point (a + h, b +k) of the neighborhood.

$$f(a,b) < f(a+h,b+k)$$

(c) Extremum value

f(a, b) is said to be an extremum value of f(x, y) if it is either a maximum or minimum.

(d) Necessary conditions for a maximum or a minimum.

$$f_x(a,b) = 0$$
 and $f_y(a,b) = 0$

Notations: $f_x = \frac{\partial f}{\partial x}$, $f_y = \frac{\partial f}{\partial y}$, $f_{xx} = \frac{\partial^2 f}{\partial x^2}$, $f_{xy} = \frac{\partial^2 f}{\partial x \partial y}$, $f_{yy} = \frac{\partial^2 f}{\partial y^2}$

(e) Sufficient conditions:

If $f_x(a, b) = 0$ and $f_y(a, b) = 0$ and $f_{xx}(a, b) = A$, $f_{xy}(a, b) = B$, $f_{yy}(a, b) = C$, then (i) f(a, b) is maximum value if $AC - B^2 > 0$ and A < 0 or B < 0(ii) f(a, b) is minimum value if $AC - B^2 > 0$ and A > 0 or B > 0(iii) f(a, b) is not an extremum (saddle) if $AC - B^2 < 0$ (iv) if $AC - B^2 = 0$ then the test is inconclusive.

(f) Stationary value

A function f(x, y) is said to be stationary at (a, b) or f(a, b) is said to be

AN AUTONOMOUS INSTITUTION

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

Stationary value of f(x, y) if $f_x(a, b) = 0$ and $f_y(a, b) = 0$

Note:

Every extremum value is a stationary value but a stationary value need not be an extremum value

Problems Based on Maxima and Minima for Functions of Two Variables

Example:

Find the extreme values of the function $f(x, y) = x^3 + y^3 - 3x - 12y + 20$

Solution:

Given
$$f(x, y) = x^3 + y^3 - 3x - 12y + 20$$

 $f_x = 3x^2 - 3$; $f_y = 3y^2 - 12$
 $f_{xx} = 6x = A$, $f_{xy} = 0 = B$, $f_{yy} = 6y = 6$

To find the stationary points.

$f_{\chi} = 0$	$f_x = 0$
$3x^2 - 3 = 0$	$3y^2 - 12 = 0$
$x^2 - 1 = 0$	$y^2 - 4 = 0$
$x = \pm 1$	$y = \pm 2$

∴ Stationary points are (1,2), (1,-2), (-1,2), (-1,-2)

	(1,2)	(1,-2)	(-1,2)	(-1,-2)
A = 6x	6 > 0	6 > 0	-6 < 0	-6 < 0
B = 0	0	0	0	0
C = 6y	12	-12	12	-12
$AC = B^2$	72 > 0	-72 < 0	-72 < 0	72 > 0
Conclusion	Min. point	Saddle point	Saddle point	Max. point
A Manimum and the off of the second state				

 \therefore Maximum value of f(x, y) is

WSTITUTION'S www.snsgroups.com

AN AUTONOMOUS INSTITUTION

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

$$f(-1,-2) = (-1)^3 + (-2)^3 - 3(-1) - 12(-2) + 20$$

= -1 - 8 + 3 + 24 + 20 = 38

Minimum value of f(x, y) is

$$f(1,2) = (1)^3 + (2)^3 - 3(1) - 12(2) + 20 = 2$$

Example:

A flat circular plate is heated so that the temperature at any point (x, y) is $u(x, y) = x^2 + 2y^2 - x$. Find the coldest point on the plate. Solution:

$$\begin{array}{c|c} u(x,y) = x^2 + 2y^2 - x \\ u_x = 2x - 1 & u_y = 4y \\ \hline u_x = 0 & u_y = 0 \\ \Rightarrow 2x - 1 = & 4y = 0 \\ 0 & y = 0 \\ \Rightarrow x = \frac{1}{2} & y = 0 \\ \Rightarrow x = \frac{1}{2} & z = 0 \\ A = & u_{xx} = 2 \ ; \ C = & u_{yy} = 4 & B = u_{xy} = 0 \\ \Delta = & AC - B^2 > 0 \end{array}$$

J is minimum at $\left(\frac{1}{2},0\right)$ and its minimum value is $-\frac{1}{4}$

Example:

Find the maxima and minima of $x^4 + y^4 - 2x^2 + 4xy - 2y^2$

Solution:

$$\begin{aligned} f(x,y) &= x^4 + y^4 - 2x^2 + 4xy - 2y^2 \\ f_x &= 4x^3 - 4x + 4y & ; \ f_y &= 4y^3 + 4x - 4y \\ f_{xx} &= 12x^2 - 4 &= A, \ f_{xy} &= 4 = B, \ f_{yy} &= 12y^2 - 4 &= 6 \end{aligned}$$

To find the stationary points.

$f_{\pi} = 0$	$f_y = 0$

AN AUTONOMOUS INSTITUTION

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

$4x^3 - 4x + 4y = 0$	$4y^3 + 4x - 4y = 0$			
$x^3 - x + y = 0 \dots (1)$	$y^3 + x - y = 0 \dots (2)$			
$(1) + (2) \Rightarrow x^3 + y^3 = 0 \Rightarrow x^3 = -y^3 \Rightarrow y = -x$				
$(1) \Rightarrow x^3 - x - x = 0 \Rightarrow x^3 - 2x = 0 \Rightarrow x(x^2 - 2) = 0$				
$\Rightarrow x = 0 \ (or) \ (x^2 - 2) = 0$				
$\Rightarrow x = 0 (or) x = \pm \sqrt{2}$				

∴ The stationary points are (0,0), $(\sqrt{2}, -\sqrt{2}), (-\sqrt{2}, \sqrt{2})$

	(0,0)	(√2, −√2)	$(-\sqrt{2}, \sqrt{2})$
Α	-4 < 0	20 > 0	20 > 0
$= 12x^2 - 4$			
B = 4	4	4	4
С	-4	20	20
$= 12y^2 - 4$			
$AC - B^2$	0	384 > 0	384 > 0
Conclusion	Cannot be an	Minimum	Minimum
	extreme point	point	point

Minimum at $(\sqrt{2}, -\sqrt{2})$

$$= (\sqrt{2})^{4} + (-\sqrt{2})^{4} - 2(\sqrt{2})^{2} + 4\sqrt{2}(-\sqrt{2}) - 2(-\sqrt{2})^{2}$$

= 4 + 4 - 4 - 8 - 4

$$= -8$$
Minimum at $(-\sqrt{2}, \sqrt{2})$

$$= (-\sqrt{2})^{4} + (\sqrt{2})^{4} - 2(-\sqrt{2})^{2} + 4(-\sqrt{2})\sqrt{2} - 2(\sqrt{2})^{2}$$

$$= 4 + 4 - 8 - 4 - 4 = -8$$