

SIGNALS AND SYSTEMS

SIGNALS AND SYSTEMS/23ECT201/ Dr. A. Vaniprabha /Baseband Sampling of Continuous-Time Signals

Baseband Sampling of Continuous-Time Signals

Basic Concepts and Applications

Sampling

Conversion of Continuous-Time (CT) signals to Discrete-

Time (DT) signals

Purpose of Sampling

Digital systems to process analog signals

Applications in Digital Signal Processing

Communication, audio, and video systems.

Baseband Signals

- Baseband Signals Low-frequency signals
- Characteristics of Baseband Signals Low frequencies, centered around zero frequency

Nyquist Theorem

- Avoiding aliasing
- Nyquist Rate Minimum sampling rate as twice the highest frequency of the signal

 $f_s \ge 2f \max$

Baseband Sampling Process

- Step-by-step process of sampling a CT baseband signal
- Illustration of Sampling Point

Aliasing and Sampling Rate

- Aliasing occurs when a CT signal is sampled below the Nyquist rate.
- Aliased Signals- Common examples
- Avoid Aliasing Increasing the sampling rate or using anti-aliasing filters

- Fourier Transform of Sampled Signal
- Relationship between CT and DT Frequencies
- Graphical Representation

Applications

- Communication Systems
- Audio and Video Processing
- Medical Imaging

