

SIGNALS AND SYSTEMS

SIGNALS AND SYSTEMS/23ECT201/ Dr. A. Vaniprabha / Properties of Z transform

Properties of Z transform

- ➤ Linearity
- Time Shifting
- Convolution
- > Multiplication by n (Differentiation in Z-domain)
- Scaling in the z-domain
- Time Reversal
- Initial Value Theorem
- Final Value Theorem

Linearity

If $x_1[n] \leftrightarrow X_1(z)$ and $x_2[n] \leftrightarrow X_2(z)$,

then for constants a and b:

 $→ a^*x_1[n] + b^*x_2[n] \leftrightarrow a^*X_1(z) + b^*X_2(z)$

Explanation

The Z-transform of a linear combination of signals is the same linear combination of their Z-transforms.

Time Shifting

If $x[n] \leftrightarrow X(z)$, then:

- ➤ Right Shift (delay): $x[n k] \leftrightarrow z^{(-k)} * X(z)$
- > Left Shift (advance): $x[n + k] \leftrightarrow z^k *$
- (X(z) terms involving past values)

Explanation

Shifting a signal in time affects its Z-transform by powers of z, with different effects for left and right shifts.

Convolution

If $x_1[n] \leftrightarrow X_1(z)$ and $x_2[n] \leftrightarrow X_2(z)$, then:

➤ Convolution: $x_1[n] * x_2[n] \leftrightarrow X_1(z) * X_2(z)$

Explanation

The Z-transform of the convolution of two signals is the product of their Z-transforms.

If $x[n] \leftrightarrow X(z)$, then:

Explanation

Multiplying a signal by n in the time domain is equivalent to differentiating its Z-transform with respect to z, scaled by -z.

Scaling in the Z-domain

If $x[n] \leftrightarrow X(z)$, then for constant a:

 \succ aⁿ * x[n] \leftrightarrow X(z/a)

Explanation

Scaling by aⁿ in time domain corresponds to scaling z by a in Z-transform.

Time Reversal

- If $x[n] \leftrightarrow X(z)$, then:
- \succ x[-n] ↔ X(1/z)

Explanation

Reversing a signal in time corresponds to replacing z with 1/z in Z-domain.

Initial Value Theorem

For causal x[n],

> $x[0] = lim(z \rightarrow \infty) X(z)$

Explanation

Allows calculation of the initial value x[0] directly from the Z-transform.

Final Value Theorem

For a stable system,

> $x[\infty] = \lim(z \rightarrow 1) (1 - z^{(-1)}) * X(z)$

Explanation

Provides the steady-state value of x[n] as n approaches infinity.

