

SIGNALS AND SYSTEMS

SIGNALS AND SYSTEMS/23ECT201/ Dr. A. Vaniprabha /working with simple Sensors and DT signals

Working with simple Sensors and DT signals

Introduction to Sensors and DT Signals

Sensors

Discrete-Time (DT) Signals

> Importance

SIGNALS AND SYSTEMS/23ECT201/ Dr. A. Vaniprabha /working with simple Sensors and DT signals

Types of Simple Sensors

- Temperature Sensors (e.g., Thermocouples)
- Pressure Sensors (e.g., Barometers)
- Light Sensors (e.g., Photodiodes)
- Proximity Sensors (e.g., IR Sensors)
- Each sensor type converts physical quantities into electrical signals.

Sampling and Discretization

Sampling

Sampling Rate

➤ Aliasing

SIGNALS AND SYSTEMS/23ECT201/ Dr. A. Vaniprabha /working with simple Sensors and DT signals

Analog-to-Digital Conversion (ADC)

> ADC

Quantization

Resolution

Processing Steps:

- Filter raw data to reduce noise.
- Downsample if necessary.
- Apply transformations or features for analysis.

Use Cases:

Temperature monitoring, motion detection, etc.

Filtering and Noise Reduction

- ➢ Noise
- Types of Filters
 - Low-pass filter
 - Moving average filter
- > Importance

Applications in Real-World Scenarios

- Temperature Control Systems
- Home Automation
- Medical Devices

