
SNS COLLEGE OF ENGINEERING
Kurumbapalayam (Po), Coimbatore – 641 107

An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with ‘A’ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA

SCIENCE

COURSE NAME : 23ITT101- PROBLEM SOLVING & C PROGRAMMING

I YEAR /I SEMESTER

Unit IV – FUNCTIONS AND POINTERS

Topic : Pointers and Arrays

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Topics Covered

• Pointers:

• Pointers and Arrays

• Pointers and character Strings

• Array of Pointers

• Function Returning Pointers

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Pointers and Arrays

When an array is declared, the compiler allocates a base address and

sufficient amount of storage to contain all the elements of array in

contiguous memory locations.

The base address is the location of the first element (index 0) of the

array.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

• Suppose the base address of x is 1000 and assuming

that each integer requires two bytes, the five

elements will be stored as follows:

Elements x[0] x[1] x[2] x[3] x[4]

Value

Address 1000 1002 1004 1006 1008

Pointers and Arrays

1 2 3 4 5

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

• The name x is defined as a constant pointer pointing to the

first element x[0] and therefore value of x is 1000, the

location where x[0] is stored .

int p = x;

p = &x[0]=1000;

• Here p is an integer pointer.

• We can access the value of x using p++ (Pointer variable

with increment operator) to move from one element to

another.

Pointers and Arrays

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

• Example:

p = &x[0] (=1000)

p+1 = &x[1] (=1002)

….

p+4 = &x[4] (=1008)

• Address of element is calculated using its index and

the scale factor of the data type.

• Address of x[3] = base address + (3 x scale factor of int)

=1000 + (3 x 2) =1006

Pointers and Arrays

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Pointer to access one-dimensional array elements:

• We can use pointers to access array elements.

Note that *(p+3) gives the value of x[3].

• The pointer accessing method is much faster than array

indexing.

• Similarly pointers can be used to manipulate two-

dimensional arrays.

Pointers and Arrays

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Pointers and Arrays

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Pointers and Arrays

#include <stdio.h>

int main()

{

int i;

int a[5] = {1, 2, 3, 4, 5};

int *p = a; // same as int*p = &a[0]

for (i = 0; i < 5; i++)

{

printf("%d", *p); p++;

}

return 0;

}
SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

• Strings are treated like character arrays and

therefore, they are declared and initialized as

follows:

char str [5] = “good”;

• The compiler automatically inserts the null

character ‘\0’ at the end of the string.

• C supports an alternative method to create

strings using pointer variables of type char.

Pointers and Character Strings

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Pointers and Character Strings
Example:

char * str= “String”;

• This creates a string for the literal and then stores its address in

the pointer variable str.

• The pointer str now points to the first character of the string

“String” as:

• We can also use the runtime assignment for giving values to a

string pointer

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

char * string1;

string1 = “good”;

• Note that the assignment,

string1 = “good”;

• is not a string copy, because the variable string1 is a pointer,

not a string

Pointers and Character Strings

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

• A string is a sequence of characters which we save in

an array.

• And in C programming language the \0 null character

marks the end of a string.

Creating a string:

• In the following example we are creating a string str

using char character array of size 6.

char str[6] = "Hello";

Pointers and Character Strings

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

• The above string can be represented in memory as

follows.

• Each character in the string str takes 1 byte of

memory space.

Pointers and Character Strings

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

• In the following code we are assigning the address

of the string str to the pointer ptr.

char *ptr = str;

Accessing string via pointer:

• To access and print the elements of the string we

can use a loop and check for the \0 null character.

Pointers and Character Strings

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

main()

{

char *name;

int length;

char *cptr=name;

name=”delhi”;

printf(“%s”,name);

while (cptr != ‘\0’)

{

printf(“%c is stored at address %u \n”,*cptr,cptr);

cptr++;

}

length=cptr-name;

printf(“%d”,length);

}

Pointers and Character Strings

#include <stdio.h>

int main()

{

char str[6] = "Hello"; // string variable

char *ptr = str; // pointer variable

while(*ptr != '\0') // print the string

{

printf("%c", *ptr);

// move the ptr pointer to the next memory location

ptr++;

}

return 0;

}

Array of Pointers

Pointer to an array is also known as array pointer. We are

using the pointer to access the components of the array.

int a[3] = {3, 4, 5 };

int *ptr = a;

We have a pointer ptr that focuses to the 0th component of the

array. Similarly a pointer can be declared that point to whole

array rather than just a single component of the array.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Array of Pointers

Syntax:

data type (*var name)[size of array];

// pointer to an array of five numbers int (* ptr)[5] = NULL;

The above declaration is the pointer to an array of five

integers. We use parenthesis to pronounce pointer to an

array.

Since subscript has higher priority than indirection, it is

crucial to encase the indirection operator and pointer name

inside brackets.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Array of Pointers

#include <stdio.h>

int main()

{

// Pointer to an array of five numbers

int(*a)[5];

int b[5] = { 1, 2, 3, 4, 5 };

int i = 0;

// Points to the whole array b

a = &b;

for (i = 0; i < 5; i++)

printf("%d\n", *(*a + i));

return 0;

}

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Array of Pointers

“Array of pointers” is an array of the pointer variables. It is

also known as pointer arrays.

Syntax:

int *var_name[array_size];

Declaration of an array of pointers:

int *ptr[3];

We can make separate pointer variables which can point to

the different values or we can make one integer array of

pointers that can point to all the values.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Array of Pointers

// C program to demonstrate // example of array of pointers.
#include <stdio.h>
const int SIZE = 3;
void main()

{
// creating an array

int arr[] = { 1, 2, 3 };
// we can make an integer pointer array to

// storing the address of array elements
int i, *ptr[SIZE];

for (i = 0; i < SIZE; i++) {
// assigning the address of integer.

ptr[i] = &arr[i];
}

// printing values using pointer
for (i = 0; i < SIZE; i++) {

printf("Value of arr[%d] = %d\n", i, *ptr[i]);
}

}

Array of Pointers

#include<stdio.h>
const int size = 4;

void main()
{

// array of pointers to a character
// to store a list of strings
char* names[] = {

"amit",
"amar",
"ankit",
"akhil"

};
int i = 0;
for (i = 0; i < size; i++) {
printf("%s\n", names[i]);

}
}

Array of Pointers
// C program to understand difference between pointer to an
integer and pointer to an array of integers.
#include<stdio.h>
int main()
{
// Pointer to an integer
int *p;
// Pointer to an array of 5 integers
int (*ptr)[5];
int arr[5];
// Points to 0th element of the arr.
p = arr;
// Points to the whole array arr.
ptr = &arr;
printf("p = %p, ptr = %p\n", p, ptr);
p++;
ptr++;
printf("p = %p, ptr = %p\n", p, ptr);
return 0;
}

Array of Pointers

p: is pointer to 0th element of the array arr, while ptr is a pointer

that points to the whole array arr.

The base type of p is int while base type of ptr is ‘an array of 5

integers’.

We know that the pointer arithmetic is performed relative to the

base size, so if we write ptr++, then the pointer ptr will be shifted

forward by 20 bytes.

On dereferencing a pointer expression we get a value pointed to

by that pointer expression.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Array of Pointers

• Pointer to an array points to an array, so on dereferencing

it, we should get the array, and the name of array denotes

the base address.

• So whenever a pointer to an array is dereferenced, we get

the base address of the array to which it points.

• The following figure shows the pointer p and ptr. Darker arrow

denotes pointer to an array.

Function Returning Pointers

• C also allows to return a pointer from a function.

• We can pass pointers to the function as well as return

pointer from a function.

• But it is not recommended to return the address of a local

variable outside the function as it goes out of scope after

function returns.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Function Returning Pointers

Syntax

return_type *function_name(parameter_list)
{

// function body

}

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Function Returning Pointers

Examples

int *func(int, int);

// this function returns a pointer to

int

double *func(int, int);

// this function returns a pointer to

double

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Function Returning Pointers

#include <stdio.h>

int *returnPointer(int *p);

int main()

{

int i=10;

int *ptr1, *ptr2;

ptr1=&i;

ptr2=returnPointer(&i);

printf("\n *ptr1 = %d",*ptr1);

printf("\n *ptr2 = %d",*ptr2);

return 0;

}

int *returnPointer(int *pt)

{

return pt; }

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Function Returning Pointers

#include<stdio.h>

int *return_pointer(int *, int); // this function returns a pointer of type int

int main()

{

int i, *ptr;

int arr[] = {11, 22, 33, 44, 55};

i = 4;

printf("Address of arr = %p\n", arr);

ptr = return_pointer(arr, i);

printf("\nAfter incrementing arr by 4 \n\n");

printf("Address of ptr = %p\n\n", ptr);

printf("Value at %p is %d\n", ptr, *ptr);

// signal to operating system program ran fine

return 0;}

int *return_pointer(int *p, int n)

{

p = p + n;

return p;

}

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

Summary

• Pointer variables can be used in expressions.

• We may also use short-hand operators with the pointers.

• Pointer can also be compared using the relational operators.

• When the pointers are used for character array or strings, then it is

called as string pointers.

• We can create a pointer to store the address of an array. This created

pointer is called a pointer to an array also known as an array pointer.

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

SNSCE/ AI&DS/ AP / Dr . N. ABIRAMI

